scholarly journals Network pharmacology exploration reveals a common mechanism in the treatment of cardio-cerebrovascular disease with Salvia miltiorrhiza Burge. and Carthamus tinctorius L

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu Wang ◽  
Yajun Shi ◽  
Junbo Zou ◽  
Xiaofei Zhang ◽  
Yulin Liang ◽  
...  

Abstract Background This study aimed to identify the key genes and KEGG pathways in Carthamus tinctorius L. (Safflower) and Salvia miltiorrhiza Burge. (Salvia) for the treatment of cardio-cerebrovascular disease, and to explore their potential molecular mechanisms. Methods Compounds and targets in Safflower and Salvia were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). We obtained targets of myocardial infarction (MI) and cerebral infarction (CI) data from Therapeutic Target Database (TTD), Drugbank and DisGeNET datasets. The network of Safflower, Salvia, CI and MI was established and then executing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the functional characteristics were performed. The Chinese herbal prescription and target for CI and MI were obtained by searching in the database. Finally, the main pathways of Salvia and Safflower in Chinese patent medicines were analyzed. The MCAO model was established in rats, and compatibility of salvia with safflower was experimentally verified. Results We obtained a total of 247 genes targeted by 52 compounds from Safflower and 119 genes targeted by 48 compounds from Salvia. In total, we identified 299 known therapeutic targets for the treatment of CI and 960 targets for the treatment MI. There are 23 common targets for Salvia, Safflower, MI, and CI. A total of 85 KEGG pathways were also enriched and intersected with the pathway of proprietary Chinese medicine to yield 25 main pathways. Safflower and Salvia have the best therapeutic effect in MCAO. Conclusion We identified gene lists for Safflower and Salvia in CI and MI. Bioinformatics and interaction analyses may provide new insight into the treatment of cardio-cerebrovascular diseases with Safflower and Salvia.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Kunmin Xiao ◽  
Kexin Li ◽  
Sidan Long ◽  
Chenfan Kong ◽  
Shijie Zhu

Breast cancer is one of the most common cancers endangering women’s health all over the world. Traditional Chinese medicine is increasingly recognized as a possible complementary and alternative therapy for breast cancer. Chaihu-Shugan-San is a traditional Chinese medicine prescription, which is extensively used in clinical practice. Its therapeutic effect on breast cancer has attracted extensive attention, but its mechanism of action is still unclear. In this study, we explored the molecular mechanism of Chaihu-Shugan-San in the treatment of breast cancer by network pharmacology. The results showed that 157 active ingredients and 8074 potential drug targets were obtained in the TCMSP database according to the screening conditions. 2384 disease targets were collected in the TTD, OMIM, DrugBank, GeneCards disease database. We applied the Bisogenet plug-in in Cytoscape 3.7.1 to obtain 451 core targets. The biological process of gene ontology (GO) involves the mRNA catabolic process, RNA catabolic process, telomere organization, nucleobase-containing compound catabolic process, heterocycle catabolic process, and so on. In cellular component, cytosolic part, focal adhesion, cell-substrate adherens junction, and cell-substrate junction are highly correlated with breast cancer. In the molecular function category, most proteins were addressed to ubiquitin-like protein ligase binding, protein domain specific binding, and Nop56p-associated pre-rRNA complex. Besides, the results of the KEGG pathway analysis showed that the pathways mainly involved in apoptosis, cell cycle, transcriptional dysregulation, endocrine resistance, and viral infection. In conclusion, the treatment of breast cancer by Chaihu-Shugan-San is the result of multicomponent, multitarget, and multipathway interaction. This study provides a certain theoretical basis for the treatment of breast cancer by Chaihu-Shugan-San and has certain reference value for the development and application of new drugs.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Feifei Lei ◽  
Mingjun Zhao ◽  
Haifang Wang ◽  
Chao Pan ◽  
Xiaoya Shi

Objective: To explore the target and mechanism of Astragalus membranaceus, poria, salvia miltiorrhiza and semen leiocarpa in the treatment of heart failure by network pharmacology. Methods: The active components of traditional Chinese medicine and the target of heart failure were screened by multi-platform, and the standard gene was transformed by Uniprot. CytoCasp 3.6.1 was used to draw the network diagram of traditional Chinese medicine - component - target. Go and KEGG analysis were performed by Metascape. Results: A total of 36 predictive target sites of Radix Astragalus, Fuling poria, Salvia miltiorrhiza and Draba nemorosa were screened for treatment of heart failure, mainly involving nerve and factor pathways: ADRB2, ADRA1B and AChE. Cancer pathway: TP53, TNF; Pathways of inflammation: IL1B, PTSG2, PTSG1; Sex hormone pathway: ESR1, AR, PGR; Others: SCN5A, HIF1A, etc. The results of GO and KEGG enrichment suggested that the treatment of heart failure with the top four drugs involved cancer pathway, calcium signaling pathway, HIF-1 signaling pathway, and involved in blood circulation, cell proliferation and other processes. Conclusion: This study combines the pharmacological studies of Chinese medicine and western medicine to reveal the mechanism of multi-target and multi-channel regulation of body balance in Chinese medicine treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
De Jin ◽  
Li Wang ◽  
Cheng Tang ◽  
...  

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Bo Liang ◽  
Xiao-Xiao Zhang ◽  
Ning Gu

Abstract Background Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery disease (CAD) in clinical practice in China. However, research on the active components and underlying mechanisms of GXV in CAD is still scarce. Methods A virtual screening and network pharmacological approach was utilized for predicting the pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related databases were selected and then the potential targets of these compounds were identified. Then, after the CAD targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established. Results A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained. The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were identified. Conclusion GXV could be employed for CAD through molecular mechanisms, involving complex interactions between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of GXV against CAD.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenhao Niu ◽  
Feng Wu ◽  
Haiming Cui ◽  
Wenyue Cao ◽  
YuChieh Chao ◽  
...  

“Three formulas and three medicines,” which include Jinhua Qinggan granule, Lianhua Qingwen capsule/granule, Xuebijing injection, Qingfei Paidu decoction, HuaShiBaiDu formula, and XuanFeiBaiDu granule, have been proven to be effective in curbing coronavirus disease 2019 (COVID-19), according to the State Administration of Traditional Chinese Medicine. The aims of this study were to identify the active components of “Three formulas and three medicines” that can be used to treat COVID-19, determine their mechanism of action via angiotensin-converting enzyme 2 (ACE2) by integrating network pharmacological approaches, and confirm the most effective components for COVID-19 treatment or prevention. We investigated all the compounds present in the aforementioned herbal ingredients. Compounds that could downregulate the transcription factors (TFs) of ACE2 and upregulate miRNAs of ACE2 were screened via a network pharmacology approach. Hepatocyte nuclear factor 4 alpha (HNF4A), peroxisome proliferator-activated receptor gamma (PPARG), hsa-miR-2113, and hsa-miR-421 were found to regulate ACE2. Several compounds, such as quercetin, decreased ACE2 expression by regulating the aforementioned TFs or miRNAs. After comparison with the compounds present in Glycyrrhiza Radix et Rhizoma, quercetin, glabridin, and gallic acid present in the herbal formulas and medicines were found to alter ACE2 expression. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to search for possible molecular mechanisms of these compounds. In conclusion, traditional Chinese medicine (TCM) plays a pivotal role in the prevention and treatment of COVID-19. Quercetin, glabridin, and gallic acid, the active components of recommended TCM formulas and medicines, can inhibit COVID-19 by downregulating ACE2.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chun-Li Piao ◽  
Jin-Li Luo ◽  
De Jin ◽  
Cheng Tang ◽  
Li Wang ◽  
...  

Abstract Introduction Radix Salviae (Dan-shen in pinyin), a classic Chinese herb, has been extensively used to treat diabetic retinopathy in clinical practice in China for many years. However, the pharmacological mechanisms of Radix Salviae remain vague. The aim of this study was to decrypt the underlying mechanisms of Radix Salviae in the treatment of diabetic retinopathy using a systems pharmacology approach. Methods A network pharmacology-based strategy was proposed to elucidate the underlying multi-component, multi-target, and multi-pathway mode of action of Radix Salviae against diabetic retinopathy. First, we collected putative targets of Radix Salviae based on the Traditional Chinese Medicine System Pharmacology database and a network of the interactions among the putative targets of Radix Salviae and known therapeutic targets of diabetic retinopathy was built. Then, two topological parameters, “degree” and “closeness certainty” were calculated to identify the major targets in the network. Furthermore, the major hubs were imported to the Database for Annotation, Visualization and Integrated Discovery to perform a pathway enrichment analysis. Results A total of 130 nodes, including 18 putative targets of Radix Salviae, were observed to be major hubs in terms of topological importance. The results of pathway enrichment analysis indicated that putative targets of Radix Salviae mostly participated in various pathways associated with angiogenesis, protein metabolism, inflammatory response, apoptosis, and cell proliferation. The putative targets of Radix Salviae (vascular endothelial growth factor, matrix metalloproteinases, plasminogen, insulin-like growth factor-1, and cyclooxygenase-2) were recognized as active factors involved in the main biological functions of treatment, which implied that these were involved in the underlying mechanisms of Radix Salviae on diabetic retinopathy. Conclusions Radix Salviae could alleviate diabetic retinopathy via the molecular mechanisms predicted by network pharmacology. This research demonstrates that the network pharmacology approach can be an effective tool to reveal the mechanisms of traditional Chinese medicine from a holistic perspective.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huimin Jiang ◽  
Cheng Hu ◽  
Meijuan Chen

Amid the establishment and optimization of Connectivity Map (CMAP), the functional relationships among drugs, genes, and diseases are further explored. This biological database has been widely used to identify drugs with common mechanisms, repurpose existing drugs, discover the molecular mechanisms of unknown drugs, and find potential drugs for some diseases. Research on traditional Chinese medicine (TCM) has entered a new era in the wake of the development of bioinformatics and other subjects including network pharmacology, proteomics, metabolomics, herbgenomics, and so on. TCM gradually conforms to modern science, but there is still a torrent of limitations. In recent years, CMAP has shown its distinct advantages in the study of the components of TCM and the synergetic mechanism of TCM formulas; hence, the combination of them is inevitable.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110477
Author(s):  
Fei Wang ◽  
Jia-Hui Chen ◽  
Bo Liu ◽  
Ting Zhang

Purpose: Prescriptions of Han-Shi-Yu-Fei (HSYF), Han-Shi-Zu-Fei (HSZF), and Yi-Du-Bi-Fei (YDBF) were effective in treating COVID-19. Based on network pharmacology and molecular docking, overlapping Traditional Chinese medicines (TCMs), their active components, and core targets were explored in this study. Methods: First, the overlapping TCMs and their active components were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) by evaluating Oral Bioactivity (OB) and Drug Likeness (DL). The overlapping targets of potential components and COVID-19 were collected by SwissTargetPrediction, Gene Cards, and Venn 2.1.0 databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were analyzed via DAVID6.8.1 database. Through comprehensive analysis of the “prescriptions-TCMs-components” (P-T-C), “components-targets-pathways” (C-T-P) and “protein–protein interaction” (PPI) networks constructed by Cytoscape 3.7.1 software, the active components and core targets were obtained. Finally, the binding energies of these components with ACE2 and SARS-CoV-2 3CL were analyzed by AutDockTools-1.5.6 and PyMOL software. Results: In all, five overlapping TCMs, 40 potential active components, and 47 candidate targets were obtained and analyzed in these prescriptions. There were 288 GO entries ( P < 0.05), including 211 biological process (BP), 40 cell composition (CC), and 37 molecular function (MF) entries. Most of the 105 KEGG pathways ( P < 0.05) were involved with viral infection and inflammation. Through “PPI” and “C-T-P” networks, the core targets (EGFR, PTGS2, CDK2, GSK3B, PIK3R1, and MAPK3) and active components (Q27134551, acanthoside B, neohesperidin, and irisolidone) with high degrees were obtained. Molecular docking results showed that the above-mentioned four components could inhibit the binding of ACE2 and SARS-COV-2 3CL to protect against COVID-19. Conclusion: In this study, the active components and core targets of three prescriptions in the treatment of COVID-19 were elaborated by network pharmacology and molecular docking, providing a reference for their applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qian Tan ◽  
Yaoxi Liu ◽  
Ting Lei ◽  
Weihua Ye ◽  
Xin Hu ◽  
...  

Traumatic bone defect is one of the major orthopedic diseases in clinics, and its incidence is increasing year by year. And repairing traumatic bone defects is a very difficult problem in clinics at present. The surface of medical titanium-based alloy has good biological properties, and its implant has a certain role in promoting bone in bone tissue. However, titanium-based materials are biologically inert and have no biological activity. As a traditional Chinese medicine, Salvia miltiorrhiza has the efficacy of treating bone diseases and promoting bone healing. The curative effect can be better exerted by loading the traditional Chinese medicine active compound Salvia miltiorrhiza on the surface of the titanium implant in a certain way. At present, due to the complex chemical composition of Salvia miltiorrhiza, the mechanism of its use for the treatment of traumatic bone defects is still unclear. Therefore, in this study, we mainly discussed the potential target and mechanism of Salvia miltiorrhiza in the treatment of traumatic bone defects through network pharmacology, which may provide a scientific basis for the treatment of traumatic bone defects with Salvia miltiorrhiza loaded on the surface of medical titanium-based alloy. We screened out effective compounds and targets of Salvia miltiorrhiza and targets related to traumatic bone defects with the help of relevant databases. The targets of Salvia miltiorrhiza for traumatic bone defects were analyzed by STRING and GeneCards databases, and the results were visualized by constructing a compound-target network, protein-protein interaction network, and compound-target-disease network with Cytoscape 3.7.1 analysis software. Finally, the selected core targets carried out GO and KEGG enrichment. The results showed that 60 main active components were screened from Salvia miltiorrhiza Bunge, which could act on 149 targets. There were 33 active components and 70 targets related to traumatic bone defects, respectively. The core targets of Salvia miltiorrhiza in the treatment of traumatic bone defects were MAPK1, MAPK10, MAPK14, TGFB1, and TNF. The results of enrichment analysis showed that Salvia miltiorrhiza might treat traumatic bone defects through an osteogenic differentiation pathway.


Sign in / Sign up

Export Citation Format

Share Document