scholarly journals Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Bo Liang ◽  
Xiao-Xiao Zhang ◽  
Ning Gu

Abstract Background Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery disease (CAD) in clinical practice in China. However, research on the active components and underlying mechanisms of GXV in CAD is still scarce. Methods A virtual screening and network pharmacological approach was utilized for predicting the pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related databases were selected and then the potential targets of these compounds were identified. Then, after the CAD targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established. Results A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained. The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were identified. Conclusion GXV could be employed for CAD through molecular mechanisms, involving complex interactions between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of GXV against CAD.

2020 ◽  
Vol 11 ◽  
Author(s):  
Haimiao Chen ◽  
Ting Wang ◽  
Jinna Yang ◽  
Shuiping Huang ◽  
Ping Zeng

The coexistence of coronary artery disease (CAD) and chronic kidney disease (CKD) implies overlapped genetic foundation. However, the common genetic determination between the two diseases remains largely unknown. Relying on summary statistics publicly available from large scale genome-wide association studies (n = 184,305 for CAD and n = 567,460 for CKD), we observed significant positive genetic correlation between CAD and CKD (rg = 0.173, p = 0.024) via the linkage disequilibrium score regression. Next, we implemented gene-based association analysis for each disease through MAGMA (Multi-marker Analysis of GenoMic Annotation) and detected 763 and 827 genes associated with CAD or CKD (FDR < 0.05). Among those 72 genes were shared between the two diseases. Furthermore, by integrating the overlapped genetic information between CAD and CKD, we implemented two pleiotropy-informed informatics approaches including cFDR (conditional false discovery rate) and GPA (Genetic analysis incorporating Pleiotropy and Annotation), and identified 169 and 504 shared genes (FDR < 0.05), of which 121 genes were simultaneously discovered by cFDR and GPA. Importantly, we found 11 potentially new pleiotropic genes related to both CAD and CKD (i.e., ARHGEF19, RSG1, NDST2, CAMK2G, VCL, LRP10, RBM23, USP10, WNT9B, GOSR2, and RPRML). Five of the newly identified pleiotropic genes were further repeated via an additional dataset CAD available from UK Biobank. Our functional enrichment analysis showed that those pleiotropic genes were enriched in diverse relevant pathway processes including quaternary ammonium group transmembrane transporter, dopamine transport. Overall, this study identifies common genetic architectures overlapped between CAD and CKD and will help to advance understanding of the molecular mechanisms underlying the comorbidity of the two diseases.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Liuying Chen ◽  
Yinghao Yao ◽  
Chaolun Jin ◽  
Shen Wu ◽  
Qiang Liu ◽  
...  

Abstract Background Coronary artery disease (CAD) and plasma lipid levels are highly correlated, indicating the presence of common pathways between them. Nevertheless, the molecular pathways underlying the pathogenic comorbidities for both traits remain poorly studied. We sought to identify common pathways and key driver genes by performing a comprehensive integrative analysis based on multi-omic datasets. Methods By performing a pathway-based analysis of GWAS summary data, we identified that lipoprotein metabolism process-related pathways were significantly associated with CAD risk. Based on LD score regression analysis of CAD-related SNPs, significant heritability enrichments were observed in the cardiovascular and digestive system, as well as in liver and gastrointestinal tissues, which are the main regulators for lipid level. Results We found there existed significant genetic correlation between CAD and other lipid metabolism related traits (the smallest P value < 1 × 10− 16). A total of 13 genes (e.g., LPA, APOC1, APOE and SLC22A3) was found to be overlapped between CAD and plasma lipid levels. By using the data-driven approach that integrated transcriptome information, we discovered co-expression modules associated prominently with both CAD and plasma lipids. With the detailed topology information on gene-gene regulatory relationship, we illustrated that the identified hub genes played important roles in the pathogenesis of CAD and plasma lipid turbulence. Conclusion Together, we identified the shared molecular mechanisms underlying the correlation between CAD and plasma lipid levels.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Weitie Wang ◽  
Qing Liu ◽  
Yong Wang ◽  
Hulin Piao ◽  
Bo Li ◽  
...  

Background. This study aim to identify the core pathogenic genes and explore the potential molecular mechanisms of human coronary artery disease (CAD). Methodology. Two gene profiles of epicardial adipose tissue from CAD patients including GSE 18612 and GSE 64554 were downloaded and integrated by R software packages. All the coexpression of deferentially expressed genes (DEGs) were picked out and analyzed by DAVID online bioinformatic tools. In addition, the DEGs were totally typed into protein-protein interaction (PPI) networks to get the interaction data among all coexpression genes. Pictures were drawn by cytoscape software with the PPI networks data. CytoHubba were used to predict the hub genes by degree analysis. Finally all the top 10 hub genes and prediction genes in Molecular complex detection were analyzed by Gene ontology and Kyoto encyclopedia of genes and genomes pathway analysis. qRT-PCR were used to identified all the 10 hub genes. Results. The top 10 hub genes calculated by the degree method were AKT1, MYC, EGFR, ACTB, CDC42, IGF1, FGF2, CXCR4, MMP2 and LYN, which relevant with the focal adhesion pathway. Module analysis revealed that the focal adhesion was also acted an important role in CAD, which was consistence with cytoHubba. All the top 10 hub genes were verified by qRT-PCR which presented that AKT1, EGFR, CDC42, FGF2, and MMP2 were significantly decreased in epicardial adipose tissue of CAD samples (p<0.05) and MYC, ACTB, IGF1, CXCR4, and LYN were significantly increased (p<0.05). Conclusions. These candidate genes could be used as potential diagnostic biomarkers and therapeutic targets of CAD.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 442 ◽  
Author(s):  
Surendra Kumar ◽  
Vijay Kumar ◽  
Jong-Joo Kim

Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052097985
Author(s):  
Dong Zhang ◽  
Liying Guan ◽  
Xiaoming Li

Background Coronary artery disease (CAD) is the leading cause of mortality worldwide. We aimed to screen out potential gene signatures and construct a diagnostic model for CAD. Method We downloaded two mRNA profiles, GSE66360 and GSE60993, and performed analyses of differential expression, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The STRING database was used to identify protein–protein interactions (PPI). PPI network visualization and screening out of key genes were performed using Cytoscape software. Finally, a diagnostic model was constructed. Results A total of 2127 differentially expressed genes (DEGs) were identified in GSE66360, and 527 DEGs in GSE60993. Of the 153 DEGs from both datasets that showed differential expression between CAD patients and controls, 471 biological process terms, 35 cellular component terms, 17 molecular function terms, and 49 KEGG pathways were significantly enriched. The top 20 key genes in the PPI network were identified, and a diagnostic model constructed from five optimal genes that could efficiently separate CAD patients from controls. Conclusion We identified several potential biomarkers for CAD and built a logistic regression model that will provide a valuable reference for future clinical diagnoses and guide therapeutic strategies.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 440
Author(s):  
Carina Mauersberger ◽  
Heribert Schunkert ◽  
Hendrik B. Sager

Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingxuan Li ◽  
Lin Qi ◽  
Yanglei Li ◽  
Shuyi Zhang ◽  
Lei Lin ◽  
...  

Background and AimCoronary artery disease (CAD) poses a worldwide health threat. Compelling evidence shows that pericardial adipose tissue (PAT), a brown-like adipose adjacent to the external surface of the pericardium, is associated with CAD. However, the specific molecular mechanisms of PAT in CAD are elusive. This study aims to characterize human PAT and explore its association with CAD.MethodsWe acquired samples of PAT from 31 elective cardiac surgery patients (17 CAD patients and 14 controls). The transcriptome characteristics were assessed in 5 CAD patients and 4 controls via RNA-sequencing. Cluster profile R package, String database, Cytoscape were applied to analyze the potential pathways and PPI-network key to DEGS, whereas the hubgenes were predicted via Metascape, Cytohubba, and MCODE. We use Cibersort, ENCORI, and DGIDB to predict immunoinfiltration, mRNA-miRNA target gene network, and search potential drugs targeting key DEGs. The predictable hubgenes and infiltrating inflammatory cells were validated in 22 patients (12 CAD samples and 10 control samples) through RT-qPCR and immunohistochemistry.ResultsA total of 147 different genes (104 up-regulated genes and 43 down-regulated genes) were identified in CAD patients. These different genes were associated with immunity and inflammatory dysfunction. Cibersort analysis showed monocytes and macrophages were the most common subsets in immune cells, whereas immunohistochemical results revealed there were more macrophages and higher proportion of M1 subtype cells in PAT of CAD patients. The PPI network and module analysis uncovered several crucial genes, defined as candidate genes, including Jun, ATF3, CXCR4, FOSB, CCl4, which were validated through RT-qPCR. The miRNA-mRNA network implicated hsa-miR-185-5p as diagnostic targets and drug-gene network showed colchicine, fenofibrate as potential therapeutic drugs, respectively.ConclusionThis study demonstrates that PAT is mainly associated with the occurrence of CAD following the dysfunction of immune and inflammatory processes. The identified hubgenes, predicted drugs and miRNAs are promising biomarkers and therapeutic targets for CAD.


2009 ◽  
Vol 296 (2) ◽  
pp. H428-H434 ◽  
Author(s):  
Neel R. Sodha ◽  
Richard T. Clements ◽  
Munir Boodhwani ◽  
Shu-Hua Xu ◽  
Roger J. Laham ◽  
...  

Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Because of the diffuse nature of their disease, diabetic patients may be at risk for incomplete revascularization, highlighting a potential role for proangiogenic therapy in this group. This study investigates molecular mechanisms of angiogenesis in diabetic patients. Myocardial tissue was harvested from patients undergoing coronary artery bypass grafting [nondiabetic (ND) 11, type 2 diabetic (DM) 10]. Expression of angiostatin, endostatin, their precursors (plasminogen and collagen XVIII, respectively), enzymes leading to their production [matrix metalloprotease (MMP)-2 and -9, cathepsin L], and an inhibitor of MMPs (tissue inhibitor of metalloproteinase) was assessed with Western blotting. MMP activity was assessed. Coronary collateralization was graded by Rentrop scoring of angiograms. Plasminogen and collagen XVIII expression were similar between groups. Angiostatin expression trended to increase 1.24-fold ( P = 0.07), and endostatin expression increased 2.02-fold in DM patients relative to ND ( P = 0.02). MMP-9 expression was no different between groups, whereas MMP-2 expression decreased 1.8-fold in diabetics ( P = 0.003). MMP-2 and -9 activity decreased 1.33-fold ( P = 0.03) and 1.57-fold ( P = 0.04), respectively, in diabetic patients. Cathepsin L expression was 1.38-fold higher in diabetic patients ( P = 0.02). Coronary collateralization scores were ND 2.1 ± 0.37 vs. DM 1.0 ± 0.4 ( P = 0.05). Myocardial endostatin expression correlated strongly with the percentage of hemoglobin A1c ( r = 0.742, P = 0.0001). Myocardial expression of angiostatin and endostatin demonstrated significant negative linear correlations with coronary collateralization (angiostatin r = −0.531, P = 0.035, endostatin r = −0.794, P = 0.0002). Diabetic patients with CAD exhibit increased levels of the antiangiogenic proteins angiostatin and endostatin and differential regulation of the enzymes governing their production relative to ND patients. Myocardial levels of these proteins show significant correlation to coronary collateralization. These findings offer potential new therapeutic targets for enhancing proangiogenic therapy and insight into the angiogenic impairments seen in diabetes.


2021 ◽  
pp. jim-2021-001935
Author(s):  
Mohammad Amin Momeni-Moghaddam ◽  
Gholamreza Asadikaram ◽  
Mohammad Masoumi ◽  
Erfan Sadeghi ◽  
Hamed Akbari ◽  
...  

The molecular mechanisms of opium with regard to coronary artery disease (CAD) have not yet been determined. The aim of the present study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in patients with CAD with and without opium addiction. This case–control study was conducted in three groups: (1) opium-addicted patients with CAD (CAD+OA, n=30); (2) patients with CAD with no opium addiction (CAD, n=30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n=17). Protein and messenger RNA (mRNA) levels of CD9, CD36, and CD68 were evaluated by flow cytometry and reverse transcription-quantitative PCR methods, respectively. Consumption of atorvastatin, aspirin, and glyceryl trinitrate was found to be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD+OA group than in the CAD and Ctrl groups (p=0.001 and p=0.005, respectively). MDA levels significantly increased in the CAD and CAD+OA groups in comparison with the Ctrl group (p=0.010 and p=0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at the gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Sign in / Sign up

Export Citation Format

Share Document