scholarly journals Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Naijian Li ◽  
Zhouli Dai ◽  
Zhang Wang ◽  
Zhishan Deng ◽  
Jiahuan Zhang ◽  
...  

Abstract Background Dysbiosis of the gut microbiome is involved in the pathogenesis of various diseases, but the contribution of gut microbes to the progression of chronic obstructive pulmonary disease (COPD) is still poorly understood. Methods We carried out 16S rRNA gene sequencing and short-chain fatty acid analyses in stool samples from a cohort of 73 healthy controls, 67 patients with COPD of GOLD stages I and II severity, and 32 patients with COPD of GOLD stages III and IV severity. Fecal microbiota from the three groups were then inoculated into recipient mice for a total of 14 times in 28 days to induce pulmonary changes. Furthermore, fecal microbiota from the three groups were inoculated into mice exposed to smoke from biomass fuel to induce COPD-like changes. Results We observed that the gut microbiome of COPD patients varied from that of healthy controls and was characterized by a distinct overall microbial diversity and composition, a Prevotella-dominated gut enterotype and lower levels of short-chain fatty acids. After 28 days of fecal transplantation from COPD patients, recipient mice exhibited elevated lung inflammation. Moreover, when mice were under both fecal transplantation and biomass fuel smoke exposure for a total of 20 weeks, accelerated declines in lung function, severe emphysematous changes, airway remodeling and mucus hypersecretion were observed. Conclusion These data demonstrate that altered gut microbiota in COPD patients is associated with disease progression in mice model.

2021 ◽  
Author(s):  
Naijian Li ◽  
Zhouli Dai ◽  
Zhang Wang ◽  
Zhishan Deng ◽  
Jiahuan Zhang ◽  
...  

Abstract Background: Dysbiosis of the gut microbiome is involved in the pathogenesis of various diseases, but the contribution of gut microbes to the progression of chronic obstructive pulmonary disease (COPD) is still poorly understood. Methods: We carried out 16S rRNA gene sequencing and short-chain fatty acid analyses in stool samples from a cohort of 73 healthy controls, 67 patients with COPD of GOLD stages I and II severity, and 32 patients with COPD of GOLD stages III and IV severity. Fecal microbiota from the three groups were then inoculated into recipient mice for a total of 14 times in 28 days to induce pulmonary changes. Furthermore, fecal microbiota from the three groups were inoculated into mice exposed to smoke from biomass fuel to induce COPD-like changes. Results: We observed that the gut microbiome of COPD patients varied from that of healthy controls and was characterized by a distinct overall microbial diversity and composition, a Prevotella-dominated gut enterotype and lower levels of short-chain fatty acids. After 28 days of fecal transplantation from COPD patients, recipient mice exhibited elevated lung inflammation. Moreover, when mice were under both fecal transplantation and biomass fuel smoke exposure for a total of 20 weeks, accelerated declines in lung function, severe emphysematous changes, airway remodeling and mucus hypersecretion were observed. Conclusion: These data demonstrate that altered gut microbiota in COPD patients is associated with disease progression in mice model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathalie Acevedo ◽  
Jose Miguel Escamilla-Gil ◽  
Héctor Espinoza ◽  
Ronald Regino ◽  
Jonathan Ramírez ◽  
...  

BackgroundChronic obstructive pulmonary disease (COPD) is associated with increased risk of severe COVID-19, but the mechanisms are unclear. Besides, patients with severe COVID-19 have been reported to have increased levels of several immune mediators.MethodsNinety-two proteins were quantified in 315 plasma samples from 118 asthmatics, 99 COPD patients and 98 healthy controls (age 40-90 years), who were recruited in Colombia before the COVID-19 pandemic. Protein levels were compared between each disease group and healthy controls. Significant proteins were compared to the gene signatures of SARS-CoV-2 infection reported in the “COVID-19 Drug and Gene Set Library” and with experimentally tested protein biomarkers of severe COVID-19.ResultsForty-one plasma proteins showed differences between patients and controls. Asthmatic patients have increased levels in IL-6 while COPD patients have a broader systemic inflammatory dysregulation driven by HGF, OPG, and several chemokines (CXCL9, CXCL10, CXCL11, CX3CL1, CXCL1, MCP-3, MCP-4, CCL3, CCL4 and CCL11). These proteins are involved in chemokine signaling pathways related with response to viral infections and some, were found up-regulated upon SARS-CoV-2 experimental infection of Calu-3 cells as reported in the COVID-19 Related Gene Sets database. An increase of HPG, CXCL9, CXCL10, IL-6, MCP-3, TNF and EN-RAGE has also been experimentally detected in patients with severe COVID-19.ConclusionsCOPD patients have altered levels of plasma proteins that have been reported increased in patients with severe COVID-19. Our study suggests that COPD patients have a systemic dysregulation in chemokine networks (including HGF and CXCL9) that could make them more susceptible to severe COVID-19. Also, that IL-6 levels are increased in some asthmatic patients (especially in females) and this may influence their response to COVID-19. The findings in this study depict a novel panel of inflammatory plasma proteins in COPD patients that may potentially associate with increased susceptibility to severe COVID-19 and might be useful as a biomarker signature after future experimental validation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kate L. Bowerman ◽  
Saima Firdous Rehman ◽  
Annalicia Vaughan ◽  
Nancy Lachner ◽  
Kurtis F. Budden ◽  
...  

AbstractChronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1146
Author(s):  
Salvatore Sotgia ◽  
Panagiotis Paliogiannis ◽  
Elisabetta Sotgiu ◽  
Sabrina Mellino ◽  
Elisabetta Zinellu ◽  
...  

The aim of this systematic review and meta-analysis was to assess the blood concentrations of the total and reduced forms of the low-molecular-weight antioxidant thiol glutathione (GSH) in chronic obstructive pulmonary disease (COPD) patients in comparison to healthy individuals. A literature search was conducted in the PubMed and Web of Science databases from inception until June 2020. In the 18 studies identified (involving a total of 974 COPD patients and 631 healthy controls), the pooled reduced GSH concentrations were significantly lower in patients with COPD than controls (SMD  =  −3.04, 95% CI = −4.42 to −1.67; p  <  0.001). By contrast, the pooled total GSH concentrations were significantly higher in patients with COPD than controls (SMD = 0.42, 95% CI = 0.11 to 0.73; p = 0.009). Our meta-analysis showed that the blood concentrations of reduced GSH, even in the presence of higher total GSH concentrations, were significantly lower in patients with COPD when compared to healthy controls. This suggests that an impaired antioxidant defense system plays an important role in the pathogenesis of COPD.


Medicina ◽  
2011 ◽  
Vol 48 (6) ◽  
pp. 43
Author(s):  
Līga Balode ◽  
Gunta Strazda ◽  
Normunds Jurka ◽  
Uldis Kopeika ◽  
Agnese Kislina ◽  
...  

Background and Objective. Chronic obstructive pulmonary disease (COPD) is characterized by a persistence of inflammation in large and small airways. We hypothesized that this could be caused by the inability of an inflammatory process to resolve. In the resolution of inflammation, a switching of arachidonic acid metabolism from the production of proinflammatory leukotriene B4 (LtB4) to the synthesis of anti-inflammatory lipoxins plays an important role. The aim of our study was to determine the content of lipoxin A4 (LXA4) and LtB4 in induced sputum of patients with exacerbated COPD and to compare it to healthy controls, as well as to analyze the relationship between proinflammatory and anti-inflammatory mediators and an inflammatory cell spectrum in induced sputum. Material and Methods. Induced sputum from 17 COPD patients and 7 healthy controls were analyzed for LXA4 and LtB4 content and inflammatory cell spectrum. Results. COPD patients had a significantly lower sputum LXA4 concentration and LtB4/LXA4 ratio compared with healthy controls. A significant negative correlation was found between the LXA4 concentration and the relative neutrophil count and between the LtB4/LXA4 ratio and the relative macrophage count. Conclusions. COPD patients during the late phase of exacerbation had a suppressed production of LXA4 and an elevated LtB4/LXA4 ratio in induced sputum demonstrating a proinflammatory imbalance. The correction of a balance between proinflammatory and anti-inflammatory eicosanoids by the administration of stable analogues of lipoxins could improve the treatment of chronic obstructive pulmonary disease in the future.


2020 ◽  
Author(s):  
Yu-Chi Chiu ◽  
Shih-Wei Lee ◽  
Chi-Wei Liu ◽  
Rebecca Chou-Jui Lin ◽  
Yung-Chia Huang ◽  
...  

Abstract Background Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that reduces lung and respiratory function, with a high mortality rate. Severe and acute deterioration of COPD can easily lead to respiratory failure, resulting in personal, social, and medical burden. Recent studies have shown a high correlation between the gut microbiota and lung inflammation. In this study, we investigated the relationship between gut microbiota and COPD severity. Results A total of 60 COPD patients with varying severity according to GOLD guidelines were enrolled in this study. DNA was extracted from patients’ stool and 16S rRNA data analysis conducted using high-throughput sequencing followed by bioinformatics analysis. The richness of the gut microbiota was not associated with COPD severity. The gut microbiome is more similar in stage 1 and 2 COPD than stage 3+4 COPD. Fusobacterium and Aerococcus were more abundant in stage 3+4 COPD. Ruminococcaceae NK4A214 group and Lachnoclostridium were less abundant in stage 2-4, and Tyzzerella 4 and Dialister were less abundant in stage 1. However, the abundance of a Bacteroides strain was associated with eosinophil count and lung function. Conclusions This study suggests that no distinctive gut microbiota pattern is associated with the severity of COPD. The gut microbiome could affect COPD by gut inflammation shaping the host immune system.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249944
Author(s):  
Yu-Chi Chiu ◽  
Shih-Wei Lee ◽  
Chi-Wei Liu ◽  
Rebecca Chou-Jui Lin ◽  
Yung-Chia Huang ◽  
...  

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that reduces lung and respiratory function, with a high mortality rate. Severe and acute deterioration of COPD can easily lead to respiratory failure, resulting in personal, social, and medical burden. Recent studies have shown a high correlation between the gut microbiota and lung inflammation. In this study, we investigated the relationship between gut microbiota and COPD severity. A total of 60 COPD patients with varying severity according to GOLD guidelines were enrolled in this study. DNA was extracted from patients’ stool and 16S rRNA data analysis conducted using high-throughput sequencing followed by bioinformatics analysis. The richness of the gut microbiota was not associated with COPD severity. The gut microbiome is more similar in stage 1 and 2 COPD than stage 3+4 COPD. Fusobacterium and Aerococcus were more abundant in stage 3+4 COPD. Ruminococcaceae NK4A214 group and Lachnoclostridium were less abundant in stage 2–4, and Tyzzerella 4 and Dialister were less abundant in stage 1. However, the abundance of a Bacteroides was associated with blood eosinophils and lung function. This study suggests that no distinctive gut microbiota pattern is associated with the severity of COPD. The gut microbiome could affect COPD by gut inflammation shaping the host immune system.


2020 ◽  
Vol 29 (2) ◽  
pp. 864-872
Author(s):  
Fernanda Borowsky da Rosa ◽  
Adriane Schmidt Pasqualoto ◽  
Catriona M. Steele ◽  
Renata Mancopes

Introduction The oral cavity and pharynx have a rich sensory system composed of specialized receptors. The integrity of oropharyngeal sensation is thought to be fundamental for safe and efficient swallowing. Chronic obstructive pulmonary disease (COPD) patients are at risk for oropharyngeal sensory impairment due to frequent use of inhaled medications and comorbidities including gastroesophageal reflux disease. Objective This study aimed to describe and compare oral and oropharyngeal sensory function measured using noninstrumental clinical methods in adults with COPD and healthy controls. Method Participants included 27 adults (18 men, nine women) with a diagnosis of COPD and a mean age of 66.56 years ( SD = 8.68). The control group comprised 11 healthy adults (five men, six women) with a mean age of 60.09 years ( SD = 11.57). Spirometry measures confirmed reduced functional expiratory volumes (% predicted) in the COPD patients compared to the control participants. All participants completed a case history interview and underwent clinical evaluation of oral and oropharyngeal sensation by a speech-language pathologist. The sensory evaluation explored the detection of tactile and temperature stimuli delivered by cotton swab to six locations in the oral cavity and two in the oropharynx as well as identification of the taste of stimuli administered in 5-ml boluses to the mouth. Analyses explored the frequencies of accurate responses regarding stimulus location, temperature and taste between groups, and between age groups (“≤ 65 years” and “> 65 years”) within the COPD cohort. Results We found significantly higher frequencies of reported use of inhaled medications ( p < .001) and xerostomia ( p = .003) in the COPD cohort. Oral cavity thermal sensation ( p = .009) was reduced in the COPD participants, and a significant age-related decline in gustatory sensation was found in the COPD group ( p = .018). Conclusion This study found that most of the measures of oral and oropharyngeal sensation remained intact in the COPD group. Oral thermal sensation was impaired in individuals with COPD, and reduced gustatory sensation was observed in the older COPD participants. Possible links between these results and the use of inhaled medication by individuals with COPD are discussed.


Sign in / Sign up

Export Citation Format

Share Document