scholarly journals A novel all-in-one strategy for purification and immobilization of β-1,3-xylanase directly from cell lysate as active and recyclable nanobiocatalyst

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lixi Cai ◽  
Yunmen Chu ◽  
Xin Liu ◽  
Yue Qiu ◽  
Zhongqi Ge ◽  
...  

Abstract Background Exploring a simple and versatile technique for direct immobilization of target enzymes from cell lysate without prior purification is urgently needed. Thus, a novel all-in-one strategy for purification and immobilization of β-1,3-xylanase was proposed, the target enzymes were covalently immobilized on silica nanoparticles via elastin-like polypeptides (ELPs)-based biomimetic silicification and SpyTag/SpyCatcher spontaneous reaction. Thus, the functional carriers that did not require the time-consuming surface modification step were quickly and efficiently prepared. These carriers could specifically immobilize the SpyTag-fused target enzymes from the cell lysate without pre-purification. Results The ELPs-SpyCatcher hardly leaked from the carriers (0.5%), and the immobilization yield of enzyme was up to 96%. Immobilized enzyme retained 85.6% of the initial activity and showed 88.6% of the activity recovery. Compared with free ones, the immobilized β-1,3-xylanase showed improved thermal stability, elevated storage stability and good pH tolerance. It also retained more than 70.6% of initial activity after 12 reaction cycles, demonstrating its excellent reusability. Conclusions The results clearly highlighted the effectiveness of the novel enzyme immobilization method proposed here due to the improvement of overall performance of immobilized enzyme in respect to free form for the hydrolysis of macromolecular substrates. Thus, it may have great potential in the conversion of algae biomass as well as other related fields.

2019 ◽  
Author(s):  
Lixi Cai ◽  
Yunmeng Chu ◽  
Xin Liu ◽  
Yue Qiu ◽  
Zhongqi Ge ◽  
...  

Abstract Background: Exploring a simple and versatile technique for direct immobilization of target enzymes from cell lysate without prior purification is urgently needed. Thus, a novel all-in-one strategy for purification and immobilization of β-1, 3-xylanase was proposed, the target enzymes were covalently immobilized on silica nanoparticles via ELP-based biomimetic silicification and SpyTag/SpyCatcher spontaneous reaction. Thus, the functional carriers that did not require the time-consuming surface modification step were quickly and efficiently prepared. These carriers could specifically immobilize the SpyTag-fused target enzymes from the cell lysate without pre-purification. Results: The ELPs-SpyCatcher hardly leaked from the carriers (0.5%), and the immobilization yield of enzyme was up to 96%. Immobilized enzyme retained 85.6% of the initial activity and showed 88.6% of the activity recovery. Compared with free ones, the immobilized β-1, 3-xylanase showed improved thermal stability, elevated storage stability and good pH tolerance. It also retained more than 70.6% of initial activity after12 reaction cycles, demonstrating its excellent reusability. Conclusions: The results clearly highlighted the effectiveness of the novel enzyme immobilization method proposed here due to the improvement of overall performance of immobilized enzyme in respect to free form for the hydrolysis of macromolecular substrates. Thus, it may have great potential in the conversion of algae biomass as well as other related fields.


2018 ◽  
Vol 5 (11) ◽  
pp. 172164 ◽  
Author(s):  
Yaaser Q. Almulaiky ◽  
Faisal M. Aqlan ◽  
Musab Aldhahri ◽  
Mohammed Baeshen ◽  
Tariq Jamal Khan ◽  
...  

Enzyme immobilization is one of the most important techniques for industrial applications. It makes the immobilized enzyme more stable and advantageous than the free form in different aspects. α-Amylase was immobilized on 4% cyanuric chloride-activated amidoximated acrylic fabric at pH 7.0 with (79%) maximum efficiency. A field emission scanning electron microscope and Fourier transform infrared were used to confirm the immobilization process. Even after being recycled 10 times, the immobilized enzyme lost just 28% of its initial activity. Owing to immobilization, the pH of the soluble α-amylase was shifted from 6.0 to 6.5. The immobilized α-amylases showed thermal stability at 60°C, and became more resistant to heavy metal ions. The k m values of the immobilized and soluble α-amylases were 9.6 and 3.8 mg starch ml −1 , respectively. In conclusion, this method shows that the immobilized α-amylase proved to be more efficient than its soluble form, and hence could be used during saccharification of starch.


2003 ◽  
Vol 46 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Gargi Dey ◽  
Singh Bhupinder ◽  
Rintu Banerjee

A maltooligosaccharide-forming amylase from B circulans GRS 313 was immobilized by entrapment in calcium alginate beads. The immobilized activity was affected by the size of the bead and bead size of 2mm was found to be most effective for hydrolysis. Kinetics constants, Km and Vmax were estimated and were found to be affected by the bead size. The catalytic activity of the enzyme was studied in presence of various starchy residues and metal ions. HgCl2, CuSO4 and FeCl3 caused inhibition of the enzyme. The reaction conditions, pH and temperature, was optimized using response surface methodology. At the optimum pH and temperature of 4.9 and 57ºC, the apparent activity was 25.6U/g of beads, resulting in almost 2-fold increase in activity. The immobilized enzyme showed a high operational stability by retaining almost 85% of the initial activity after seventh use.


2019 ◽  
pp. 1232-1239
Author(s):  
Mohammed A Alsoufi ◽  
Raghad A. Aziz

The aim of this study was the production of aspartame by using immobilized thermolysin in bentonite clay. The yield of immobilized thermolysin in bentonite was 92% of the original enzyme amount. pH profile of free and immobilized enzyme was 7.0 and 7.5 respectively which was stable at 6.5-9.0 for 30min. The optimum temperature of both enzymes was 50°C, while they were stable at 65°C for 30min. however, they lost 52.73 and 61.72% from its main activity at 80°C respectively. Immobilized thermolysin has retained all activity within 27 days, but it kept 68.27% of initial activity when stored for 60 days at 4°C whereas, it retained a full activity after 20 continue usage. In addition, it retained 86.53% of its original activity after 30 continuing usages. The yield of produced aspartame was increased with reaction time; it was 9% after 1h and increased gradually to 100% after 10h at reaction conditions.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 511 ◽  
Author(s):  
Sara Arana-Peña ◽  
Yuliya Lokha ◽  
Roberto Fernández-Lafuente

Eversa is an enzyme recently launched by Novozymes to be used in a free form as biocatalyst in biodiesel production. This paper shows for first time the immobilization of Eversa (a commercial lipase) on octyl and aminated agarose beads and the comparison of the enzyme properties to those of the most used lipase, the isoform B from Candida antarctica (CALB) immobilized on octyl agarose beads. Immobilization on octyl and aminated supports of Eversa has not had a significant effect on enzyme activity versus p-nitrophenyl butyrate (pNPB) under standard conditions (pH 7), but immobilization on octyl agarose beads greatly enhanced the stability of the enzyme under all studied conditions, much more than immobilization on aminated support. Octyl-Eversa was much more stable than octyl-CALB at pH 9, but it was less stable at pH 5. In the presence of 90% acetonitrile or dioxane, octyl-Eversa maintained the activity (even increased the activity) after 45 days of incubation in a similar way to octyl-CALB, but in 90% of methanol, results are much worse, and octyl-CALB became much more stable than Eversa. Coating with PEI has not a clear effect on octyl-Eversa stability, although it affected enzyme specificity and activity response to the changes in the pH. Eversa immobilized octyl supports was more active than CALB versus triacetin or pNPB, but much less active versus methyl mandelate esters. On the other hand, Eversa specificity and response to changes in the medium were greatly modulated by the immobilization protocol or by the coating of the immobilized enzyme with PEI. Thus, Eversa may be a promising biocatalyst for many processes different to the biodiesel production and its properties may be greatly improved following a suitable immobilization protocol, and in some cases is more stable and active than CALB.


Author(s):  
Alistair John ◽  
Shahrokh Shahpar ◽  
Ning Qin

This paper describes the use of the Free-Form-Deformation [1] parameterisation method to create a novel blade shape for a highly loaded, transonic axial compressor. The novel geometry makes use of pre-compression (via an S-shaping of the blade around mid-span) to weaken the shock and improve the aerodynamic performance. It has been known for some time that reducing the pre-shock Mach number of transonic compressors (via pre-compression) can improve their efficiency [2]. However, early attempts at this in the 60s [3] showed undesirable results (such as bi-stable operation), leading the design community to shy away from using pre-compression [4]. This issue is re-addressed here. It is shown that using modern simulation, optimisation and a 3D design, large amounts of pre-compression may be employed without the negative effects that plagued early attempts. This paper shows how Free-Form-Deformation offers superior flexibility over traditionally used parameterisation methods. The novel design (produced via an efficient optimisation method) is presented and the resulting flow analysed in detail. The efficiency benefit is over 2%, surpassing other results in the literature for the same geometry. The pre-compression effect of the S-shape is analysed and explained, and the entropy increase across the shock (along the mid-blade line) is shown to be reduced by almost 80%. Adjoint surface sensitivity analysis of the datum and optimised designs is presented, showing that the S-shape is located in the region predicted to be most significant for changes in efficiency. Finally the off-design performance of the blade is analysed across the rotor characteristics at various speeds.


2018 ◽  
Vol 43 (6) ◽  
pp. 595-604
Author(s):  
Yakup Aslan ◽  
Derya Ömerosmanoğlu ◽  
Eda Öndül Koç

Abstract Objective Since the soluble enzymes can not be used in repeated reactions and are not stable in operational conditions and not suitable for continuous processes, this study aimed the covalent immobilization of Bacillus licheniformis protease (BLP) onto Eupergit CM. Methods Optimum conditions for immobilization were determined by changing the conditions individually. The proteins and L-tyrosine were determined by UV/VIS spectrophotometer. Results The immobilization resulted in 100% immobilization and 107.7% activity yields. The optimum pH (7–8) and the optimum temperature (70°C) have not changed after immobilization. The Km values for free and immobilized enzyme were 26.53 and 37.59 g/L, while the Vmax values were 2.84 and 3.31 g L-Tyrosine/L·min, respectively. The immobilized enzyme has not lost its initial activity during the repeated 20 uses and 20 days of storage. The milk proteins were hydrolyzed in 2 h by using immobilized enzyme. The pH of the milk dropped from 6.89 to 6.53, the color was clearer but there was no change in the smell or the taste. Conclusion Consequently, it can be said that the immobilized BLP obtained can be used for industrial purposes.


2015 ◽  
Vol 1 (3) ◽  
Author(s):  
Theresia Maria Conny Lasut
Keyword(s):  

Words are morpheme or combination of morpheme as thesmallest unit in free form. They are divided in two groups; open class (majorword class) and close class (minor word class). Sentence can be extended withone or two sentences by using conjungtion or connector which in English (and,or, but, for,so, nor). Theory of Arts and Arts was used to find out theadverbial, congjungtion, and connector.The result showed that the novel possesed theadverbial in the paragrpahs in explainig the time or place. The conjungtion andconnector are found in the novel to connect the phrase, clause or sentences. Key words: adverbial, conjungtion, connector


2014 ◽  
Vol 12 (1) ◽  
pp. 587-596 ◽  
Author(s):  
J. Rodriguez ◽  
F. Soria ◽  
H. Geronazzo ◽  
H. Destefanis

Abstract The α-amylase from Aspergillus oryzae was immobilized covalently onto expanded perlite (EP) and modified EP by treatment with TiO2 (EP-TiO2), dye HE3B (EP-HE3B) polyethylene terephthalate (PET)-hydrazide (EP-PET) and magnetite (EP-magnetite). The modified EP was characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The supports were functionalized with aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA). The optimum pH for free and immobilized α-amylase was 5.5. Temperature of maximum activity for free enzyme and immobilized enzyme on EP-HE3B was 50°C. The immobilized enzyme in EP-APTES this value was 55°C. The immobilized α-amylase in EP-APTES and EP-HE3B-APTES exhibited better thermostability than free enzyme. The immobilized derivatives showed moderate operational stability by retaining 50% of initial activity after seven successive reuses.


2017 ◽  
Vol 48 (1) ◽  
pp. 25-37
Author(s):  
Quan Feng ◽  
Xin Li ◽  
Dingsheng Wu ◽  
Suo Liu ◽  
Mao Ye ◽  
...  

AOPAN nanofibers were prepared by electrospinning and amidoxime modification, subsequently, HEMA was used as the monomers for surface grafting via atom transfer radical polymerization, followed by coordination with Cu(II) ions, thereafter, the nanofibers AOPAN-poly(HEMA)-Cu(II) were explored as the novel support for laccase immobilization. Scanning electron microscopy was used to visualize the morphology of the nanofibers, and Fourier transform infrared spectroscopy was used to provide information on the surface chemistry of nanofibers. At the same time, the optimization of immobilization conditions and the relative properties of the immobilized laccase were also studied in this paper. The study showed the largest amount of immobilized laccase while the reaction time of atom transfer radical polymerization was 4 h. The immobilized laccase showed a better stability resistance to temperature and pH change, and the initial activity of immobilized laccase retained (60.3 ± 3.1)%, that of the free laccase retained only (21.3 ± 2.1)% when stored at 4℃ for 24 days. Immobilized laccase maintained its initial activity after 10 repeated batches of 64.5%.


Sign in / Sign up

Export Citation Format

Share Document