scholarly journals CircRFX3 contributes to glioma progression through the circRFX3-miR-1179/miR-1229-VASP axis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongli Li ◽  
Yiwei Zhang ◽  
Huiqin Song ◽  
Li Li

Abstract Background Circular RNAs (circRNAs) are implicated in the carcinogenesis of human cancers. However, the functional roles of circRFX3 in glioma are not elucidated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed for the levels of circRFX3, RFX3, miR-1179, miR-1229 and vasodilator stimulated phosphoprotein (VASP). Actinomycin D assay and RNase R assay were employed to analyze the characteristics of circRFX3. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were conducted for cell proliferation. Transwell assay was used for cell migration and invasion. Flow cytometry analysis was adopted for cell apoptosis. RNA pull-down assay, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to analyze the interaction between miR-1179/miR-1229 and circRFX3 or VASP. Western blot assay was conducted for VASP protein level. Murine xenograft model assay was used to investigate the role of circRFX3 in vivo. Results CircRFX3 level was increased in glioma tissues and cells. Knockdown of circRFX3 suppressed glioma cell proliferation, migration and invasion and promoted apoptosis in vitro and repressed tumorigenesis of glioma in vivo. MiR-1179 and miR-1229 were identified to be the targets of circRFX3. MiR-1179 or miR-1229 inhibition reversed the impacts of circRFX3 knockdown on glioma cell malignant behaviors. Additionally, VASP was demonstrated to be the target gene of miR-1179 and miR-1229, and VASP overexpression abolished the effect of circRFX3 knockdown on glioma cell progression. Conclusion CircRFX3 served as a tumor promoter in glioma via modulating miR-1179/miR-1229-VASP axis, which might provide a novel target for glioma therapy.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanfei Liang ◽  
Kaiyi Meng ◽  
Rui Qiu

Background: Circular RNAs (circRNAs) have emerged as important regulators in diverse human malignancies, including ovarian cancer (OC). This study was performed to explore the function and regulatory mechanism underlying circ_0013958 in OC progression.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot assay was applied to examine the expression of circ_0013958, microRNA-637 (miR-637), and Plexin B2 (PLXNB2). The target relationship between miR-637 and circ_0013958 or PLXNB2 was verified by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Cell Counting Kit-8 (CCK-8) and colony formation assays were employed to detect cell viability and clonogenicity ability, respectively. Cell migration and invasion were analyzed by Transwell assay. Cell apoptosis was monitored by flow cytometry. The role of circ_0013958 in vivo was determined by xenograft tumor assay.Results: Circ_0013958 and PLXNB2 were upregulated, while miR-637 was downregulated in OC tissues and cells. Circ_0013958 acted as a sponge for miR-637 to regulate the expression of PLXNB2 in OC cells. The repression effects of circ_0013958 knockdown on cell proliferation, migration, invasion, and apoptosis in OC cells were partly attenuated by the miR-637 inhibitor. And miR-637 targeted PLXNB2 to suppress OC cell proliferation, migration, and invasion. Moreover, circ_0013958 silencing blocked OC tumor growth in vivo.Conclusion: Circ_0013958 knockdown impeded OC development through modulating the miR-637/PLXNB2 axis, highlighting a therapeutic target for OC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruirui Zhang ◽  
Huanyu Zhao ◽  
Hongmei Yuan ◽  
Jian Wu ◽  
Haiyan Liu ◽  
...  

Background: Chemoresistance is a major barrier to the treatment of human cancers. Circular RNAs (circRNAs) are implicated in drug resistance in cancers, including gastric cancer (GC). In this study, we aimed to explore the functions of circRNA Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (circARVCF) in cisplatin (DDP) resistance in GC.Methods: The expression of circARVCF, microRNA-1205 (miR-1205) and fibroblast growth factor receptor 1 (FGFR1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate DDP resistance and cell colony formation ability. Transwell assay was conducted to assess cell migration and invasion. Flow cytometry analysis was done to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circARVCF, miR-1205 and FGFR1. Murine xenograft model was constructed to explore DDP resistance in vivo.Results: CircARVCF level was increased in DDP-resistant GC tissues and cells. CircARVCF silencing inhibited DDP resistance, colony formation and metastasis and induced apoptosis in DDP-resistant GC cells. CircARVCF directly interacted with miR-1205 and miR-1205 inhibition reversed circARVCF silencing-mediated effect on DDP resistance in DDP-resistant GC cells. FGFR1 served as the target gene of miR-1205. MiR-1205 overexpression restrained the resistance of DDP-resistant GC cells to DDP, but FGFR1 elevation abated the effect. In addition, circARVCF knockdown repressed DDP resistance in vivo.Conclusion: CircARVCF enhanced DDP resistance in GC by elevating FGFR1 through sponging miR-1205.


Author(s):  
Zhipeng Jiang ◽  
Qinwen Tai ◽  
Xiaojun Xie ◽  
Zehui Hou ◽  
Wei Liu ◽  
...  

Abstract Background Colorectal cancer (CRC) is a common malignant tumor. Circular RNAs (circRNAs) have been reported to take part in the progression of CRC. However, the functions of circ_0084615 in CRC development are still undefined. In this study, we aimed to explore the functions and underlying mechanisms of circ_0084615 in CRC. Methods qRT-PCR, western blot assay and IHC assay were utilized for the levels of circ_0084615, miR-599, ONECUT2 or EIF4A3. 5-ethynyl-2’-deoxyuridine (EdU) assay and colony formation assay were conducted for cell proliferation ability. Wound-healing assay and transwell assay were applied to evaluate cell migration and invasion. Tube formation assay was used to analyze angiogenesis ability. RNA immunoprecipitation (RIP) assay, RNA pull down assay and dual-luciferase reporter assay were used to analyze the relationships of circ_0084615, miR-599, ONECUT2 and EIF4A3. Murine xenograft model assay was employed for the role of circ_0084615 in vivo. Results Circ_0084615 was elevated in CRC tissues and was linked to TNM stages, lymph node metastasis, differentiation and overall survival rate. Circ_0084615 knockdown inhibited CRC cell proliferation, migration, invasion and angiogenesis in vitro and hampered tumorigenesis in vivo. Circ_0084615 sponged miR-599 and miR-599 inhibition reversed circ_0084615 knockdown-mediated effects on CRC cell growth, motility and angiogenesis. ONECUT2 was identified as the target gene of miR-599. ONECUT2 overexpression recovered the effects of miR-599 on CRC malignant behaviors. Additionally, EIF4A3 induced circ_0084615 expression. Conclusions EIF4A3-induced circ_0084615 played an oncogenic role in CRC development via miR-599/ONECUT2 axis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ruijie Liu ◽  
Ping Deng ◽  
Yonglian Zhang ◽  
Yonglan Wang ◽  
Cuiping Peng

Abstract Background Circular RNAs (circRNAs) are a class of endogenous single-strand RNA transcripts with crucial regulation in human cancers. The objective of this study is to investigate the role of circ_0082182 in CRC and its specific functional mechanism. Methods The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the levels of circ_0082182, microRNA-411 (miR-411) and microRNA-1205 (miR-1205). Cell proliferation was detected by Cell counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used for determining cell cycle and cell apoptosis. Cell apoptosis was also assessed by caspase3 and caspase9 activities. Cell migration and invasion were examined using scratch assay and transwell assay. The interaction between circ_0082182 and miRNA was validated by the dual-luciferase reporter and biotinylated RNA pull-down assays. Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by Western blot. Xenograft model was established for the research of circ_0082182 in vivo. Results Circ_0082182 was upregulated in CRC and could predict the poor prognosis of CRC patients. Functionally, circ_0082182 promoted CRC cell proliferation, cell cycle progression, and metastasis while inhibited apoptosis. Subsequently, circ_0082182 was shown to act as the sponges of miR-411 and miR-1205. MiR-411 and miR-1205 were identified as tumor inhibitors in CRC. Furthermore, circ_0082182 promoted the CRC progression via sponging miR-411 and miR-1205. Moreover, circ_0082182 facilitated the Wnt/β-catenin pathway and EMT process by targeting miR-411 and miR-1205. In vivo, circ_0082182 accelerated the CRC tumorigenesis and EMT process by activating the Wnt/β-catenin pathway by downregulating the expression of miR-411 or miR-1205. Conclusion This study showed that circ_0082182 functioned as an oncogene in the developing process of CRC by sponging miR-411 or miR-1205 to activate the Wnt/β-catenin pathway. Circ_0082182 might be a molecular target in the diagnosis and treatment of CRC.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1415-1427
Author(s):  
Hui Chen ◽  
Chen Wu ◽  
Liang Luo ◽  
Yuan Wang ◽  
Fangxing Peng

Abstract Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenhua Du ◽  
Lei Wang ◽  
Yu Xia

Abstract Background Ovarian cancer (OC) is the gynecologic cancer with the highest mortality. Circular RNAs (circRNAs) play a vital role in the development and progression of cancer. This study aimed to explore the potential role of circ_0015756 in OC and its molecular mechanism. Methods The levels of circ_0015756, microRNA-942-5p (miR-942-5p) and Cullin 4B (CUL4B) were determined by quantitative real-time PCR (qRT-PCR) or Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and transwell assay. The levels of proliferation-related and metastasis-related proteins were measured by Western blot assay. The relationship between miR-942-5p and circ_0015756 or CUL4B was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft assay was used to analyze tumor growth in vivo. Results Circ_0015756 and CUL4B levels were increased, while miR-942-5p level was decreased in OC tissues and cells. Depletion of circ_0015756 suppressed proliferation, migration and invasion and promoted apoptosis in OC cells. Down-regulation of circ_0015756 hindered OC cell progression via modulating miR-942-5p. Also, up-regulation of miR-942-5p impeded OC cell development by targeting CUL4B. Mechanistically, circ_0015756 up-regulated CUL4B via sponging miR-942-5p. Moreover, circ_0015756 silencing inhibited tumor growth in vivo. Conclusion Knockdown of circ_0015756 suppressed OC progression via regulating miR-942-5p/CUL4B axis, suggesting that circ_0015756 might be a potential therapeutic target for ovarian cancer.


2020 ◽  
Author(s):  
Gaowu Hu ◽  
Wei Peng ◽  
Yongqing Cao

Abstract Background: Currently, more and more circular RNAs (circRNAs) have been identified to exert their functions in tumor progression, including colorectal cancer (CRC). However, the role of circSEC24A (circ_0003528) in CRC remains unknown.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the levels of circSEC24A, SEC24A and microRNA-488-3p (miR-488-3p). The characterization of circSEC24A was investigated by Actinomycin D and RNase R digestion assays. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to assess cell proliferation. Flow cytometry analysis was adopted for cell apoptosis and cell cycle process. Transwell assay was employed to evaluate cell migration and invasion. Western blot assay was performed to determine protein levels. Dual-luciferase reporter assay was utilized to explore the relationship between miR-488-3p and circSEC24A or transmembrane protein 106B (TMEM106B). Murine xenograft model was constructed to explore the effect of circSEC24A in vivo .Results: CircSEC24A level was increased in CRC tissues and cells. CircSEC24A deficiency impeded cell proliferation, cell cycle process, migration and invasion and induced apoptosis in CRC cells in vitro and blocked tumorigenesis in vivo . MiR-488-3p was a target of circSEC24A and miR-488-3p was downregulated in CRC tissues and cells. The inhibitory effect of circSEC24A silencing on CRC cell progression was restored by miR-488-3p inhibition. Moreover, TMEM106B could be negatively regulated by miR-488-3p via acting as a downstream gene of miR-488-3p. MiR-488-3p overexpression decelerated CRC cell progression by targeting TMEM106B.Conclusion: CircSEC24A facilitated CRC progression by regulating miR-488-3p/TMEM106B axis, which might provide a promising treatment approach for CRC.


Author(s):  
Xuhui Fan ◽  
Meng Liu ◽  
Li Fei ◽  
Zhihui Huang ◽  
Yufeng Yan

Circular RNA (circRNA) is a key regulator of tumor progression. However, the role of circFOXM1 in glioblastoma (GBM) progression is unclear. The aim of this study was to investigate the role of circFOXM1 in GBM progression. The expression levels of circFOXM1, miR-577 and E2F transcription factor 5 (E2F5) were examined by real-time quantitative PCR. Cell counting kit 8 assay, EdU staining and transwell assay were used to detect cell proliferation, migration, and invasion. The levels of glutamine, glutamate and α-ketoglutarate were determined to evaluate the glutaminolysis ability of cells. Protein expression was tested by western blot analysis. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-577 and circFOXM1 or E2F5. Mice xenograft model for GBM was constructed to perform in vivo experiments. Our results showed that circFOXM1 was highly expressed in GBM tumor tissues and cells. Silencing of circFOXM1 inhibited GBM cell proliferation, migration, invasion, glutaminolysis, as well as tumor growth. MiR-577 could be sponged by circFOXM1, and its inhibitor could reverse the suppressive effect of circFOXM1 downregulation on GBM progression. E2F5 was a target of miR-577, and the effect of its knockdown on GBM progression was consistent with that of circFOXM1 silencing. CircFOXM1 positively regulated E2F5 expression, while miR-577 negatively regulated E2F5 expression. In conclusion, our data confirmed that circFOXM1 could serve as a sponge of miR-577 to enhance the progression of GBM by targeting E2F5, which revealed that circFOXM1 might be a biomarker for GBM treatment.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guanhong Lin ◽  
Shenyu Wang ◽  
Xinyu Zhang ◽  
Dan Wang

Abstract Background Circular RNAs (circRNAs) can regulate gene expression in different malignancies. However, the biological functions of circRNA polo-like kinase-1 (circPLK1) in the tumorigenesis of breast cancer (BC) and its potential mechanisms have not been well elucidated yet. Methods The expression levels of circPLK1, microRNA-4500 (miR-4500), insulin-like growth factor 1 (IGF1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, cell cycle distribution, cell migration and invasion were determined by Cell Counting Kit-8 (CCK-8) assay, flow cytometry and transwell assay, respectively. Western blot assay was used to analyze the protein levels of cyclin-dependent kinase (CDK) 4 and CDK-6. The relationship between miR-4500 and circPLK1 or IGF1 was predicted by starBase v3.0 and verified by dual-luciferase reporter assay and RNA pull-down assay. The mice xenograft model was established to investigate the roles of circPLK1 in vivo. Results CircPLK1 and IGF1 were upregulated and miR-4500 was downregulated in BC tissues and cells. Interference of circPLK1 inhibited BC cell growth, migration and invasion, which was reversed by overexpression of IGF1. Moreover, circPLK1 could directly bind to miR-4500 and IGF1 was verified as a direct target of miR-4500. Furthermore, IGF1 overexpression abated the inhibitory effects of miR-4500 upregulation on proliferation, migration and invasion of BC cells. Mechanically, circPLK1 was a sponge of miR-4500 to regulate IGF1 expression in BC cells. Besides, circPLK1 knockdown suppressed tumor growth via upregulating miR-4500 and downregulating IGF1. Conclusions CircPLK1 silence inhibited BC cell growth, migration and invasion by regulating miR-4500/IGF1 axis, suggesting circPLK1/miR-4500/IGF axis might be a potential therapeutic target.


2020 ◽  
Author(s):  
Shuo Yu ◽  
Min Wang ◽  
Xu Li ◽  
Xingjun Guo ◽  
Renyi Qin

Abstract Background: Circular RNAs (circRNAs) are engaged in hepatocellular carcinoma (HCC) progression, but the mechanisms remain to be elucidated. This study aimed to unveil the expression pattern and potential biological mechanisms of a newly indentified circRNA, circ-PAN3, in HCC. Methods: Cell Counting Kit-8 (CCK‐8) assay and colony formation assay were used to assess cell proliferation. Transcription-quantitative PCR (RT-qPCR) analysis and western blot analysis were used to determine the relative expression level of mRNA and protein, respectively. Cell apoptosis assay was used to evaluate the apoptosis rate of transfected cells. CircInteractome and Targetscan were utilized to predict the possible targets of circRNAs and miRNAs, respectively. Luciferase reporter assay and RNA pull-down assay were used to assess the direct interaction of RNAs. HCC cancer xenograft model was used to evaluate the biological process of circ-PAN3 in vivo. Student’s t test, χ2 test or one-way ANOVA was adopted appropriately.Results: Circ-PAN3 was elevated in HCC tissues, and patients with high Circ-PAN3 expression had a poor survival outcome. Knockdown of circ-PAN3 expression suppressed cell viability, colony formation and cell proliferation in vitro and in vivo. Circ-PAN3 elevates cyclin D1 expression to promote HCC progression. Subsequently, using CircInteractome, miR-153 were confirmed to interact with circ-PAN3 and was downregulated by circ-PAN3. Further, using Targetscan, cyclin D1 was validated to interact with miR-153 and was downregulated by miR-153. Addition of miR-153 expression with corresponsive mimics significantly reduced the expression of cyclin D1. Notably, the inhibition of cell viability, colony formation and proliferation induced by knockdown of circ-PAN3 were recovered following the combination with miR-153 inhibitor, cyclin D1, respectively. Conclusion: Together, this study demonstrated that a novel circ-PAN3/miR-153/cyclin D1 axis regulatory axis that promoted HCC progression.


Sign in / Sign up

Export Citation Format

Share Document