scholarly journals circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1415-1427
Author(s):  
Hui Chen ◽  
Chen Wu ◽  
Liang Luo ◽  
Yuan Wang ◽  
Fangxing Peng

Abstract Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.

Author(s):  
Zhipeng Jiang ◽  
Qinwen Tai ◽  
Xiaojun Xie ◽  
Zehui Hou ◽  
Wei Liu ◽  
...  

Abstract Background Colorectal cancer (CRC) is a common malignant tumor. Circular RNAs (circRNAs) have been reported to take part in the progression of CRC. However, the functions of circ_0084615 in CRC development are still undefined. In this study, we aimed to explore the functions and underlying mechanisms of circ_0084615 in CRC. Methods qRT-PCR, western blot assay and IHC assay were utilized for the levels of circ_0084615, miR-599, ONECUT2 or EIF4A3. 5-ethynyl-2’-deoxyuridine (EdU) assay and colony formation assay were conducted for cell proliferation ability. Wound-healing assay and transwell assay were applied to evaluate cell migration and invasion. Tube formation assay was used to analyze angiogenesis ability. RNA immunoprecipitation (RIP) assay, RNA pull down assay and dual-luciferase reporter assay were used to analyze the relationships of circ_0084615, miR-599, ONECUT2 and EIF4A3. Murine xenograft model assay was employed for the role of circ_0084615 in vivo. Results Circ_0084615 was elevated in CRC tissues and was linked to TNM stages, lymph node metastasis, differentiation and overall survival rate. Circ_0084615 knockdown inhibited CRC cell proliferation, migration, invasion and angiogenesis in vitro and hampered tumorigenesis in vivo. Circ_0084615 sponged miR-599 and miR-599 inhibition reversed circ_0084615 knockdown-mediated effects on CRC cell growth, motility and angiogenesis. ONECUT2 was identified as the target gene of miR-599. ONECUT2 overexpression recovered the effects of miR-599 on CRC malignant behaviors. Additionally, EIF4A3 induced circ_0084615 expression. Conclusions EIF4A3-induced circ_0084615 played an oncogenic role in CRC development via miR-599/ONECUT2 axis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanfei Liang ◽  
Kaiyi Meng ◽  
Rui Qiu

Background: Circular RNAs (circRNAs) have emerged as important regulators in diverse human malignancies, including ovarian cancer (OC). This study was performed to explore the function and regulatory mechanism underlying circ_0013958 in OC progression.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot assay was applied to examine the expression of circ_0013958, microRNA-637 (miR-637), and Plexin B2 (PLXNB2). The target relationship between miR-637 and circ_0013958 or PLXNB2 was verified by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Cell Counting Kit-8 (CCK-8) and colony formation assays were employed to detect cell viability and clonogenicity ability, respectively. Cell migration and invasion were analyzed by Transwell assay. Cell apoptosis was monitored by flow cytometry. The role of circ_0013958 in vivo was determined by xenograft tumor assay.Results: Circ_0013958 and PLXNB2 were upregulated, while miR-637 was downregulated in OC tissues and cells. Circ_0013958 acted as a sponge for miR-637 to regulate the expression of PLXNB2 in OC cells. The repression effects of circ_0013958 knockdown on cell proliferation, migration, invasion, and apoptosis in OC cells were partly attenuated by the miR-637 inhibitor. And miR-637 targeted PLXNB2 to suppress OC cell proliferation, migration, and invasion. Moreover, circ_0013958 silencing blocked OC tumor growth in vivo.Conclusion: Circ_0013958 knockdown impeded OC development through modulating the miR-637/PLXNB2 axis, highlighting a therapeutic target for OC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongli Li ◽  
Yiwei Zhang ◽  
Huiqin Song ◽  
Li Li

Abstract Background Circular RNAs (circRNAs) are implicated in the carcinogenesis of human cancers. However, the functional roles of circRFX3 in glioma are not elucidated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed for the levels of circRFX3, RFX3, miR-1179, miR-1229 and vasodilator stimulated phosphoprotein (VASP). Actinomycin D assay and RNase R assay were employed to analyze the characteristics of circRFX3. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were conducted for cell proliferation. Transwell assay was used for cell migration and invasion. Flow cytometry analysis was adopted for cell apoptosis. RNA pull-down assay, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to analyze the interaction between miR-1179/miR-1229 and circRFX3 or VASP. Western blot assay was conducted for VASP protein level. Murine xenograft model assay was used to investigate the role of circRFX3 in vivo. Results CircRFX3 level was increased in glioma tissues and cells. Knockdown of circRFX3 suppressed glioma cell proliferation, migration and invasion and promoted apoptosis in vitro and repressed tumorigenesis of glioma in vivo. MiR-1179 and miR-1229 were identified to be the targets of circRFX3. MiR-1179 or miR-1229 inhibition reversed the impacts of circRFX3 knockdown on glioma cell malignant behaviors. Additionally, VASP was demonstrated to be the target gene of miR-1179 and miR-1229, and VASP overexpression abolished the effect of circRFX3 knockdown on glioma cell progression. Conclusion CircRFX3 served as a tumor promoter in glioma via modulating miR-1179/miR-1229-VASP axis, which might provide a novel target for glioma therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenhua Du ◽  
Lei Wang ◽  
Yu Xia

Abstract Background Ovarian cancer (OC) is the gynecologic cancer with the highest mortality. Circular RNAs (circRNAs) play a vital role in the development and progression of cancer. This study aimed to explore the potential role of circ_0015756 in OC and its molecular mechanism. Methods The levels of circ_0015756, microRNA-942-5p (miR-942-5p) and Cullin 4B (CUL4B) were determined by quantitative real-time PCR (qRT-PCR) or Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and transwell assay. The levels of proliferation-related and metastasis-related proteins were measured by Western blot assay. The relationship between miR-942-5p and circ_0015756 or CUL4B was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft assay was used to analyze tumor growth in vivo. Results Circ_0015756 and CUL4B levels were increased, while miR-942-5p level was decreased in OC tissues and cells. Depletion of circ_0015756 suppressed proliferation, migration and invasion and promoted apoptosis in OC cells. Down-regulation of circ_0015756 hindered OC cell progression via modulating miR-942-5p. Also, up-regulation of miR-942-5p impeded OC cell development by targeting CUL4B. Mechanistically, circ_0015756 up-regulated CUL4B via sponging miR-942-5p. Moreover, circ_0015756 silencing inhibited tumor growth in vivo. Conclusion Knockdown of circ_0015756 suppressed OC progression via regulating miR-942-5p/CUL4B axis, suggesting that circ_0015756 might be a potential therapeutic target for ovarian cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruirui Zhang ◽  
Huanyu Zhao ◽  
Hongmei Yuan ◽  
Jian Wu ◽  
Haiyan Liu ◽  
...  

Background: Chemoresistance is a major barrier to the treatment of human cancers. Circular RNAs (circRNAs) are implicated in drug resistance in cancers, including gastric cancer (GC). In this study, we aimed to explore the functions of circRNA Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (circARVCF) in cisplatin (DDP) resistance in GC.Methods: The expression of circARVCF, microRNA-1205 (miR-1205) and fibroblast growth factor receptor 1 (FGFR1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate DDP resistance and cell colony formation ability. Transwell assay was conducted to assess cell migration and invasion. Flow cytometry analysis was done to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circARVCF, miR-1205 and FGFR1. Murine xenograft model was constructed to explore DDP resistance in vivo.Results: CircARVCF level was increased in DDP-resistant GC tissues and cells. CircARVCF silencing inhibited DDP resistance, colony formation and metastasis and induced apoptosis in DDP-resistant GC cells. CircARVCF directly interacted with miR-1205 and miR-1205 inhibition reversed circARVCF silencing-mediated effect on DDP resistance in DDP-resistant GC cells. FGFR1 served as the target gene of miR-1205. MiR-1205 overexpression restrained the resistance of DDP-resistant GC cells to DDP, but FGFR1 elevation abated the effect. In addition, circARVCF knockdown repressed DDP resistance in vivo.Conclusion: CircARVCF enhanced DDP resistance in GC by elevating FGFR1 through sponging miR-1205.


2020 ◽  
Author(s):  
Gaowu Hu ◽  
Wei Peng ◽  
Yongqing Cao

Abstract Background: Currently, more and more circular RNAs (circRNAs) have been identified to exert their functions in tumor progression, including colorectal cancer (CRC). However, the role of circSEC24A (circ_0003528) in CRC remains unknown.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the levels of circSEC24A, SEC24A and microRNA-488-3p (miR-488-3p). The characterization of circSEC24A was investigated by Actinomycin D and RNase R digestion assays. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to assess cell proliferation. Flow cytometry analysis was adopted for cell apoptosis and cell cycle process. Transwell assay was employed to evaluate cell migration and invasion. Western blot assay was performed to determine protein levels. Dual-luciferase reporter assay was utilized to explore the relationship between miR-488-3p and circSEC24A or transmembrane protein 106B (TMEM106B). Murine xenograft model was constructed to explore the effect of circSEC24A in vivo .Results: CircSEC24A level was increased in CRC tissues and cells. CircSEC24A deficiency impeded cell proliferation, cell cycle process, migration and invasion and induced apoptosis in CRC cells in vitro and blocked tumorigenesis in vivo . MiR-488-3p was a target of circSEC24A and miR-488-3p was downregulated in CRC tissues and cells. The inhibitory effect of circSEC24A silencing on CRC cell progression was restored by miR-488-3p inhibition. Moreover, TMEM106B could be negatively regulated by miR-488-3p via acting as a downstream gene of miR-488-3p. MiR-488-3p overexpression decelerated CRC cell progression by targeting TMEM106B.Conclusion: CircSEC24A facilitated CRC progression by regulating miR-488-3p/TMEM106B axis, which might provide a promising treatment approach for CRC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ruijie Liu ◽  
Ping Deng ◽  
Yonglian Zhang ◽  
Yonglan Wang ◽  
Cuiping Peng

Abstract Background Circular RNAs (circRNAs) are a class of endogenous single-strand RNA transcripts with crucial regulation in human cancers. The objective of this study is to investigate the role of circ_0082182 in CRC and its specific functional mechanism. Methods The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the levels of circ_0082182, microRNA-411 (miR-411) and microRNA-1205 (miR-1205). Cell proliferation was detected by Cell counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used for determining cell cycle and cell apoptosis. Cell apoptosis was also assessed by caspase3 and caspase9 activities. Cell migration and invasion were examined using scratch assay and transwell assay. The interaction between circ_0082182 and miRNA was validated by the dual-luciferase reporter and biotinylated RNA pull-down assays. Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by Western blot. Xenograft model was established for the research of circ_0082182 in vivo. Results Circ_0082182 was upregulated in CRC and could predict the poor prognosis of CRC patients. Functionally, circ_0082182 promoted CRC cell proliferation, cell cycle progression, and metastasis while inhibited apoptosis. Subsequently, circ_0082182 was shown to act as the sponges of miR-411 and miR-1205. MiR-411 and miR-1205 were identified as tumor inhibitors in CRC. Furthermore, circ_0082182 promoted the CRC progression via sponging miR-411 and miR-1205. Moreover, circ_0082182 facilitated the Wnt/β-catenin pathway and EMT process by targeting miR-411 and miR-1205. In vivo, circ_0082182 accelerated the CRC tumorigenesis and EMT process by activating the Wnt/β-catenin pathway by downregulating the expression of miR-411 or miR-1205. Conclusion This study showed that circ_0082182 functioned as an oncogene in the developing process of CRC by sponging miR-411 or miR-1205 to activate the Wnt/β-catenin pathway. Circ_0082182 might be a molecular target in the diagnosis and treatment of CRC.


Author(s):  
Xia Zhao ◽  
Weilei Dong ◽  
Guifang Luo ◽  
Jing Xie ◽  
Jie Liu ◽  
...  

Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, have been identified as critical regulators in human carcinogenesis. Here, we investigated the precise actions of hsa_circ_0009035 in the progression and radioresistance of cervical cancer (CC). The levels of hsa_circ_0009035, microRNA (miR)-889-3p and homeobox B7 (HOXB7) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease R (RNase R) and Actinomycin D assays were used to assess the stability of hsa_circ_0009035. Cell proliferation, cell cycle progression, apoptosis, migration and invasion were gauged by the Cell Counting Kit-8 (CCK-8), flow cytometry and transwell assays, respectively. Cell colony formation and survival were determined by the colony formation assay. Targeted correlations among hsa_circ_0009035, miR-889-3p and HOXB7 were examined by the dual-luciferase reporter, RNA immunoprecipitation (RIP) or RNA pull-down assay. Animal studies were performed to evaluate the impact of hsa_circ_0009035 on tumor growth. We found that hsa_circ_0009035 was highly expressed in CC tissues and cells, and it was associated with the radioresistance of CC patients. Moreover, the silencing of hsa_circ_0009035 inhibited CC cell proliferation, migration, invasion, and enhanced apoptosis and radiosensitivity in vitro and weakened tumor growth in vivo. Mechanistically, hsa_circ_0009035 directly targeted miR-889-3p by binding to miR-889-3p, and hsa_circ_0009035 modulated HOXB7 expression through miR-889-3p. HOXB7 was a functional target of miR-889-3p in regulating CC progression and radioresistance in vitro, and hsa_circ_0009035 modulated CC progression and radioresistance in vitro by miR-889-3p. Our current study first identified hsa_circ_0009035 as an important regulation of CC progression and radioresistance at least in part through targeting the miR-889-3p/HOXB7 axis, highlighting its significance as a potential therapeutic target for CC treatment.


Sign in / Sign up

Export Citation Format

Share Document