scholarly journals Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Aissata Camara ◽  
Mohamed Haddad ◽  
Karine Reybier ◽  
Mohamed Sahar Traoré ◽  
Mamadou Aliou Baldé ◽  
...  

Abstract Background The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful in treating cases of severe malaria. Methods In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7–8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra‐high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns. Results In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 μg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dose-dependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids. Conclusion The traditional use of Terminalia albida in the treatment of malaria was validated through the combination of in vitro and in vivo studies.

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhuochao Liu ◽  
Hongyi Wang ◽  
Chuanzhen Hu ◽  
Chuanlong Wu ◽  
Jun Wang ◽  
...  

AbstractIn this study, we identified the multifaceted effects of atezolizumab, a specific monoclonal antibody against PD-L1, in tumor suppression except for restoring antitumor immunity, and investigated the promising ways to improve its efficacy. Atezolizumab could inhibit the proliferation and induce immune-independent apoptosis of osteosarcoma cells. With further exploration, we found that atezolizumab could impair mitochondria of osteosarcoma cells, resulting in increased release of reactive oxygen species and cytochrome-c, eventually leading to mitochondrial-related apoptosis via activating JNK pathway. Nevertheless, the excessive release of reactive oxygen species also activated the protective autophagy of osteosarcoma cells. Therefore, when we combined atezolizumab with autophagy inhibitors, the cytotoxic effect of atezolizumab on osteosarcoma cells was significantly enhanced in vitro. Further in vivo experiments also confirmed that atezolizumab combined with chloroquine achieved the most significant antitumor effect. Taken together, our study indicates that atezolizumab can induce mitochondrial-related apoptosis and protective autophagy independently of the immune system, and targeting autophagy is a promising combinatorial approach to amplify its cytotoxicity.


2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Constance Schmelzer ◽  
Mitsuaki Kitano ◽  
Gerald Rimbach ◽  
Petra Niklowitz ◽  
Thomas Menke ◽  
...  

MicroRNAs (miRs) are involved in key biological processes via suppression of gene expression at posttranscriptional levels. According to their superior functions, subtle modulation of miR expression by certain compounds or nutrients is desirable under particular conditions. Bacterial lipopolysaccharide (LPS) induces a reactive oxygen species-/NF-κB-dependent pathway which increases the expression of the anti-inflammatory miR-146a. We hypothesized that this induction could be modulated by the antioxidant ubiquinol-10. Preincubation of human monocytic THP-1 cells with ubiquinol-10 reduced the LPS-induced expression level of miR-146a to 78.9±13.22%. In liver samples of mice injected with LPS, supplementation with ubiquinol-10 leads to a reduction of LPS-induced miR-146a expression to 78.12±21.25%. From these consistent in vitro and in vivo data, we conclude that ubiquinol-10 may fine-tune the inflammatory response via moderate reduction of miR-146a expression.


2014 ◽  
Vol 83 (2) ◽  
pp. 759-768 ◽  
Author(s):  
Sabrina Torre ◽  
Sebastien P. Faucher ◽  
Nassima Fodil ◽  
Silayuv E. Bongfen ◽  
Joanne Berghout ◽  
...  

We identify anN-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection withPlasmodium bergheiANKA.ThemisI23Nhomozygous mice show reduced CD4+and CD8+T lymphocyte numbers. ECM resistance inP. bergheiANKA-infectedThemisI23Nmice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMISI23Nprotein expression is absent from mutant mice, concurrent with the decreased THEMISI23Nstability observedin vitro. Biochemical studiesin vitroand functional complementationin vivoinThemisI23N/+:Lck−/+doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses inThemisI23Nmice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells.ThemisI23Nmice can be used to study the newly discovered association ofTHEMIS(6p22.33) with inflammatory bowel disease and multiple sclerosis.


2018 ◽  
Vol 49 (6) ◽  
pp. 2320-2332 ◽  
Author(s):  
Guo Zu ◽  
Tingting Zhou ◽  
Ningwei Che ◽  
Xiangwen Zhang

Background/Aims: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. Methods: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. Results: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. Conclusion: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S41-S41 ◽  
Author(s):  
Wenly Ruan ◽  
Melinda Engevik ◽  
Alexandra Chang-Graham ◽  
Joseph Hyser ◽  
James Versalovic

Abstract Background Reactive oxygen species (ROS) play a role in maintaining intestinal epithelial homeostasis and are normally kept at low levels via antioxidant compounds. Dysregulation of ROS can lead to intestinal inflammation and contribute to inflammatory bowel disease (IBD). Select gut microbes possess the enzymatic machinery to produce antioxidants whereas others can dysregulate levels of ROS. Our model microbe, Lactobacillus reuteri (ATCC PTA 6475), has been demonstrated to reduce intestinal inflammation in mice models. It contains the genes encoding two distinct GshA-like glutamylcysteine ligases. We hypothesize that L. reuteri can secrete γ-glutamylcysteine to suppress ROS, minimize NFκB activation and regulate secretion of e pithelial cytokines. Methods & Results Conditioned media from L. reuteri was analyzed via mass spectrometry to confirm the presence of γ-glutamylcysteine. All cysteine containing products including γ-glutamylcysteine were fluorescently tagged in the conditioned media and then incubated with HT29 cell monolayers as well as human jejunal enteroid (HJE) monolayers. γ-glutamylcysteine was demonstrated to enter intestinal epithelial cells based on microscopy. Next, a Thioltracker assay was used to show increased intracellular glutathione levels by L. reuteri secreted γ-glutamylcysteine. HT29 cells and HJEs were then treated with IL-1β or hydrogen peroxide, and L. reuteri metabolites as well as γ-glutamylcysteine significantly suppressed pro-inflammatory cytokine driven ROS and IL-8 production. L. reuteri secreted products also reduced activity of NFκB as determined by a luciferase reporter assay. γ-glutamylcysteine deficient mutants were generated by targeted mutagenesis of GshA genes, and these mutant L. reuteri strains had a diminished ability to suppress IL-8 production and ROS. To further test the role of L. reuteri secreted γ-glutamylcysteine in vivo, a 2,4,6-Trinitrobenzenesulfonic acid (TNBS)- induced mouse colitis model was used. Adolescent mice were orogavaged with PBS, L. reuteri, L. reuteri GshA2 mutant, or γ-glutamylcysteine for a week after which TNBS was rectally administered to induce colitis. We demonstrate that L. reuteri and γ-glutamylcysteine can suppress histologic inflammation compared to PBS control and L. reuteri GshA2 mutant groups. Conclusions Together these data indicate that L. reuteri secretes γ-glutamylcysteine which can enter the intestinal epithelial cells and modulate epithelial cytokine production. It acts via suppression of ROS and NFκB which then decreases IL-8 production. We are able to demonstrate this in vitro in both HT 29 cells and HJEs. We now also demonstrate this in vivo in a mouse colitis model. These experiments highlight a prominent role for ROS intermediates in microbiome-mammalian cell signaling processes involved in immune responses and intestinal inflammation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
N. Pfeifer ◽  
D. M. Baston-Büst ◽  
J. Hirchenhain ◽  
U. Friebe-Hoffmann ◽  
D. T. Rein ◽  
...  

Background. The aim of this paper was to determine the influence of differentin vitroculture media on mRNA expression of Hedgehog genes,il-6,and important genes regarding reactive oxygen species in single mouse embryos.Methods. Reverse transcription of single embryos either culturedin vitrofrom day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium) orin vivountil day 3.5post coitum. PCR was carried out forβ-actinfollowed by nested-PCR forshh, ihh, il-6, nox, gpx4, gpx1,andprdx2.Results. The number of murine blastocysts cultured in COOK medium which expressedil-6, gpx4, gpx1,andprdx2mRNA differed significantly compared to thein vivogroup. Except fornox, the mRNA profile of the Vitrolife media group embryos varied significantly from thein vivoones regarding the number of blastocysts expressing the mRNA ofshh, ihh, il-6, gpx4, gpx1andprdx2.Conclusions. The present study shows that differentin vitroculture media lead to different mRNA expression profiles during early development. Even the newly developedin vitroculture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.


Sign in / Sign up

Export Citation Format

Share Document