scholarly journals Improvement of Indoor Residual Spraying and Long‐Lasting Insecticidal Net services through structured monitoring and supervision as part of the Malaria Elimination Demonstration Project in Mandla, Madhya Pradesh

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ashok K. Mishra ◽  
Sekh Nisar ◽  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Kalyan B. Saha ◽  
...  

Abstract Background The Government of Madhya Pradesh employed Indoor Residual Spraying (IRS) with alpha-cypermethrin synthetic pyrethroids in sub-centres with Annual Parasite Incidence (API) from 2 to 4.99. In sub-centres with API more than 5, Long-Lasting Insecticidal Nets (LLINs) were distributed. At the request of the State Government, the Malaria Elimination Demonstration Project (MEDP) staff observed and provided support to both IRS and LLINs campaigns. In the year 2017, the study team monitored only the IRS campaigns, however, in the year 2018, the supportive supervision was provided to the IRS campaign teams along with post-distribution monitoring of the LLINs. Methods The study was carried out during IRS spraying using a pre-tested, closed-ended monitoring checklist which consisted of two parts- observations of spraying team and observation of sprayed houses. For LLINs, a sample of the households that received the bed nets was taken for the study. For IRS, the spraying teams were monitored for quality and technique for a total of 159 times in 2017 and 183 times in the year 2018, respectively. For post spraying observations, a total of 1261 and 1791 households were observed in the years 2017 and 2018, respectively. The use of LLINs was observed in 5 % of the households in 2018 and 2020, which is about 2,000 houses in each survey where each house received about 2.5 LLINs per household. The results of surveys were compared to assess impact of supportive supervision and monitoring. Results Significant improvement was noted after supportive supervision in year 2018 in various aspects of spraying. Preparedness of spraying, such as advance information to villagers, presence of equipment and records improved by up to 70 %. The methodology of spraying preparation improved from 50 to 90 %, spraying technique improved from 54 to 80 %, and proper use equipment during spraying improved from 51 to 92 %. After eight months post distribution of the LLINs in 2019, improvement was seen in regular usage of LLINs by 28 %. It was found that on-spot demonstrations during distribution and carrying of LLINs when sleeping outside homes increased by 56 %. Results of IEC campaigns revealed the reduction in adverse effects by 64 % and increase in awareness by 97 %. Conclusions Effective supervision improved the quality of IRS and usage of LLINs in the study area. Based on these results, continued training and monitoring of staff that is deployed to spraying houses and distribute bed nets was suggested. The study also revealed that proper IEC/BCC drives help increase community acceptance of vector control measures and their rational usage.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Sekh Nisar ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background Malaria Elimination Demonstration Project (MEDP) was started as a Public-Private-Partnership between the Indian Council of Medical Research through National Institute of Research in Tribal Health, Govt. of Madhya Pradesh and Foundation of Disease Elimination and Control of India, which is a Corporate Social Responsibility (CSR) initiative of the Sun Pharmaceutical Industries Limited. The project’s goal was to demonstrate that malaria can be eliminated from a high malaria endemic district along with prevention of re-establishment of malaria and to develop a model for malaria elimination using the lessons learned and knowledge acquired from the demonstration project. Methods The project employed tested protocols of robust surveillance, case management, vector control, and capacity building through continuous evaluation and training.  The model was developed using the learnings from the operational plan, surveillance and case management, monitoring and feedback, entomological investigations and vector control, IEC and capacity building, supply chain management, mobile application (SOCH), and independent reviews of MEDP. Results The MEDP has been operational since April 2017 with field operations from August 2017, and has observed: (1) reduction in indigenous cases of malaria by about 91 %; (2) need for training and capacity building of field staff for diagnosis and treatment of malaria; (3) need for improvement insecticide spraying and for distribution and usage of bed-nets; (4) need for robust surveillance system that captures and documents information on febrile cases, RDT positive individuals, and treatments provided; (5) need for effective supervision of field staff based on advance tour plan; (6) accountability and controls from the highest level to field workers; and (7) need for context-specific IEC. Conclusions Malaria elimination is a high-priority public health goal of the Indian Government with a committed deadline of 2030. In order to achieve this goal, built-in systems of accountability, ownership, effective management, operational, technical, and financial controls will be crucial components for malaria elimination in India. This manuscript presents a model for malaria elimination with district as an operational unit, which may be considered for malaria elimination in India and other countries with similar geography, topography, climate, endemicity, health infrastructure, and socio-economic characteristics.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Ashok K. Mishra ◽  
Praveen K. Bharti ◽  
Anup Vishwakarma ◽  
Sekh Nisar ◽  
Harsh Rajvanshi ◽  
...  

Abstract Background Understanding of malaria vector density, distribution, insecticide resistance, vector incrimination, infection status, and identification of sibling species are some of the essential components of vector control measures for achieving malaria elimination goals. Methods As part of the malaria elimination demonstration project, entomological surveillance was carried out from October 2017 to October 2019 by collecting indoor resting mosquitoes using hand catch method. Susceptibility test was done for determining the insecticide resistance status of vector mosquito Anopheles culicifacies using standard protocols by the World Health Organization. The cone bioassay method was used for determining the efficacy and quality of insecticide sprayed. Mosquitoes collected from different ecotypes were identified and processed for parasite identification, vector incrimination and sibling species determination. Results The two known malaria vector species (Anopheles culicifacies and Anopheles fluviatilis) were found in the study area, which have been previously reported in this and adjoining areas of the State of Madhya Pradesh. The prevalence of An. culicifacies was significantly higher in all study villages with peak in July while lowest number was recorded in May. Proportion of vector density was observed to be low in foothill terrains. The other anopheline species viz, Anopheles subpictus, Anopheles annularis, Anopheles vagus, Anopheles splendidus, Anopheles pallidus, Anopheles nigerrimus and Anopheles barbirostris were also recorded in the study area, although their prevalence was significantly less compared to the An. culicifacies. In 2017, An. culicifacies was found to be resistant to dichloro-diphenyl-trichloroethane (DDT) and malathion, with possible resistance to alphacypermethrin and susceptible to deltamethrin. However, in 2019, the species was found to be resistant to alphacypermethrin, DDT, malathion, with possible resistance to deltamethrin. The bioassays revealed 82 to > 98% corrected % mortality of An. culicifacies on day-one post-spraying and 35 to 62% on follow-up day-30. Anopheles culicifacies sibling species C was most prevalent (38.5%) followed by A/D and E while B was least pre-dominant (11.9%). Anopheles fluviatilis sibling species T was most prevalent (74.6%) followed by U (25.4%) while species S was not recorded. One An.culicifacies (sibling species C) was found positive for Plasmodium falciparum by PCR tests in the mosquitoes sampled from the test areas. Conclusion Based on the nine entomologic investigations conducted between 2017–2019, it was concluded that An. culicifacies was present throughout the year while An. fluviatilis had seasonal presence in the study areas. Anopheles culicifacies was resistant to alphacypermethrin and emerging resistance to deltamethrin was observed in this area. Anopheles culicifacies was confirmed as the malaria vector. This type of information on indigenous malaria vectors and insecticide resistance is important in implementation of vector control through indoor residual spraying (IRS) and use of insecticide-impregnated bed nets for achieving the malaria elimination goals.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Ashok K. Mishra ◽  
Praveen K Bharti ◽  
Gyan Chand ◽  
Aparup Das ◽  
Himanshu Jayswar ◽  
...  

Background. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are malaria vector control measures used in India, but the development of insecticide resistance poses major impediments for effective vector control strategies. As per the guidelines of the National Vector Borne Disease Control Programme (NVBDCP), the study was conducted in 12 districts of Madhya Pradesh to generate data on insecticide resistance in malaria vectors. Methods. The susceptibility tests were conducted on adult An. culicifacies as per the WHO standard technique with wild-caught mosquitoes. The blood-fed female mosquitoes were exposed in 3 to 4 replicates on each occasion to the impregnated papers with specified discriminating dosages of the insecticides (DDT: 4%, malathion: 5%, deltamethrin: 0.05%, and alphacypermethrin: 0.05%), for one hour, and mortality was recorded after 24-hour holding. Results. An. culicifacies was found resistant to DDT 4% in all the 12 districts and malathion in 11 districts. The resistance to alphacypermethrin was also observed in two districts, and possible resistance was found to alphacypermethrin in seven districts and to deltamethrin in eight districts, while the vector was found susceptible to both deltamethrin and alphacypermethrin in only 3 districts. Conclusion. An. culicifacies is resistant to DDT and malathion and has emerging resistance to pyrethroids, alphacypermethrin, and deltamethrin. Therefore, regular monitoring of insecticide susceptibility in malaria vectors is needed for implementing effective vector management strategies. However, studies to verify the impact of IRS with good coverage on the transmission of disease are required before deciding on the change of insecticide in conjunction with epidemiological data.


2021 ◽  
Author(s):  
Mary Kefi ◽  
Jason Charamis ◽  
Vasileia Balabanidou ◽  
Panagiotis Ioannidis ◽  
Hilary Ranson ◽  
...  

Abstract BackgroundInsecticide-treated bed nets and indoor residual spraying comprise the major control measures against Anopheles gambiae sl, the dominant vector in sub-Saharan Africa. The primary site of contact with insecticide is through the mosquitoes’ legs, which represents the first barrier insecticides have to bypass to reach their neuronal targets. Proteomic changes and leg cuticle modifications have been associated with insecticide resistance that may reduce the rate of penetration of insecticides. Here, we performed a multiple transcriptomic analyses focusing on An. coluzzii legs. ResultsFirstly, leg-specific enrichment analysis identified 359 genes including the pyrethroid-binder SAP2 and 2 other chemosensory proteins, along with 4 ABCG transporters previously shown to be leg enriched. Enrichment gene families included those involved in detecting chemical stimuli including gustatory and ionotropic receptors and genes implicated in hydrocarbon-synthesis. Subsequently, we compared transcript expression in the legs of a highly resistant strain (VK7-HR) to both a strain with very similar genetic background which has reverted to susceptibility after several generations without insecticide pressure (VK7-LR) and a lab susceptible population. 232 differentially expressed genes (73 up-regulated and 159 down-regulated) were identified in the resistant strain when compared to the two susceptible counterparts, indicating an over-expression of phase I detoxification enzymes and cuticular proteins, with decrease in hormone-related metabolic processes in legs from the insecticide resistant population. Finally, we analysed the short-term effect of pyrethroid exposure on An. coluzzii legs, comparing 1hour-deltamethrin-exposed (VK7-IN) to unexposed (VK7-HR) leg transcriptomes and identified 348 up-regulated genes including those encoding for GPCRs, ABC transporters, odorant-binding proteins and members of the divergent salivary gland protein family. ConclusionsThe data on An. coluzzii leg-specific transcriptome provides valuable insights into the first line of defense in pyrethroid resistant and short-term deltamethrin-exposed mosquitoes. Our results suggest that xenobiotic detoxification is likely occurring in legs, while the enrichment of sensory proteins, ABCG transporters and cuticular genes is also evident. Constitutive resistance is primarily associated with elevated levels of detoxification and cuticular genes, while short-term insecticide-induced tolerance is linked with overexpression of transporters, GPCRs and GPCR-related genes, sensory/binding and salivary gland proteins.


2021 ◽  
Vol 29 (2) ◽  
pp. 71-91
Author(s):  
E.A. Bakare ◽  
B.O. Onasanya ◽  
S. Hoskova-Mayerova ◽  
O. Olubosede

Abstract The aim of this paper is to analyse the potential impact of multiple current interventions in communities with limited resources in order to obtain optimal control strategies and provide a basis for future predictions of the most effective control measures against the spread of malaria. We developed a population-based model of malaria transmission dynamics to investigate the effectiveness of five different interventions. The model captured both the human and the mosquito compartments. The control interventions considered were: educational campaigns to mobilise people for diagnostic test and treatment and to sleep under bed nets; treatment through mass drug administration; indoor residual spraying(IRS) with insecticide to reduce malaria transmission; insecticide treated net (ITN) to reduce morbidity; and regular destruction of mosquito breeding sites to reduce the number of new mosquito and bites/contact at dusks and dawn. Analysis of the potential impact of the multiple control interventions were carried out and the optimal control strategies that minimized the number of infected human and mosquito and the cost of applying the various control interventions were determined.


2020 ◽  
Author(s):  
Timothy Awine ◽  
Sheetal P Silal

Abstract Background Assessing the effectiveness of malaria control measures in Ghana will require taking transmission dynamics of the disease into account given the influence of climate variability in the region of interest. The impact of preventative interventions on malaria incidence and the prospects of meeting program timelines in Ghana have been investigated using mathematical models based on regionally diverse climatic zones. Methods An ordinary non-linear differential equation model with its associated rate parameters was developed incorporating the transitions between various disease compartments for three ecological zones in Ghana. Model parameters were estimated using data captured on the District Health Information Management System in Ghana from 2008 to 2017.The impact of insecticide treated bed nets and indoor residual spraying on the incidence of malaria were simulated at various levels of coverage and protective effectiveness in each ecological zone. To fit the model, Approximate Bayesian Computational sampling approach was adopted. Results Increasing the coverage levels of both long lasting insecticide treated bed nets or indoor residual spraying activities without a corresponding increase in their proper use or patronage does not impact highly on averting predicted incidence of malaria in Ghana. Improving on the protective efficacy of long lasting insecticide treated bed nets through proper usage could lead to substantial reductions in the predicted incidence of malaria. Similar results were obtained with indoor residual spraying across all zones. Conclusions Projected goals set in the National Strategic plan for malaria control 2014-2020 as well as WHO targets for malaria pre-elimination by 2030 are only likely be achieved if a substantial improvement in treated bed net usage is achieved coupled with targeted deployment of indoor residual spraying with high efficacy.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mohd Bakhtiar Munajat ◽  
Mohd Amirul Fitri A. Rahim ◽  
Wathiqah Wahid ◽  
Mohd Ikhwan Mukmin Seri Rakna ◽  
Paul C. S. Divis ◽  
...  

Abstract Background Malaysia is on track towards malaria elimination. However, several cases of malaria still occur in the country. Contributing factors and communal aspects have noteworthy effects on any malaria elimination activities. Thus, assessing the community’s knowledge, attitudes and practices (KAP) towards malaria is essential. This study was performed to evaluate KAP regarding malaria among the indigenous people (i.e. Orang Asli) in Peninsular Malaysia. Methods A household-based cross-sectional study was conducted in five remote villages (clusters) of Orang Asli located in the State of Kelantan, a central region of the country. Community members aged six years and above were interviewed. Demographic, socio-economic and KAP data on malaria were collected using a structured questionnaire and analysed using descriptive statistics. Results Overall, 536 individuals from 208 households were interviewed. Household indoor residual spraying (IRS) coverage and bed net ownership were 100% and 89.2%, respectively. A majority of respondents used mosquito bed nets every night (95.1%), but only 50.2% were aware that bed nets were used to prevent malaria. Nevertheless, almost all of the respondents (97.9%) were aware that malaria is transmitted by mosquitoes. Regarding practice for managing malaria, the most common practice adopted by the respondents was seeking treatment at the health facilities (70.9%), followed by self-purchase of medication from a local shop (12.7%), seeking treatment from a traditional healer (10.5%) and self-healing (5.9%). Concerning potential zoonotic malaria, about half of the respondents (47.2%) reported seeing monkeys from their houses and 20.1% reported entering nearby forests within the last 6 months. Conclusion This study found that most populations living in the villages have an acceptable level of knowledge and awareness about malaria. However, positive attitudes and practices concerning managing malaria require marked improvement.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ravendra K. Sharma ◽  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Sekh Nisar ◽  
Himanshu Jayswar ◽  
...  

Abstract Background Malaria is known as a disease of poverty because of its dominance in poverty-stricken areas. Madhya Pradesh state in central India is one of the most vulnerable states for malaria morbidity and mortality. Socio-economic, environmental and demographic factors present challenges in malaria control and elimination. As part of the Malaria Elimination Demonstration Project in the tribal district of Mandla in Madhya Pradesh, this study was undertaken to assess the role of different social-economic factors contributing to malaria incidence. Methods The study was conducted in the 1233 villages of district Mandla, where 87% population resides in rural areas. The data was collected using the android based mobile application—SOCH for a period of 2 years (September 2017 to August 2019). A wealth index was computed along with analysis of the socio-economic characteristics of houses with malaria cases. Variables with significant variation in malaria cases were used in logistic regression. Results More than 70% of houses in Mandla are Kuccha (made of thatched roof or mud), 20% do not have any toilet facilities, and only 11% had an annual income of more than 50,000 INR, which converts to about $700 per year. Households with younger heads, male heads, more number of family members were more likely to have malaria cases. Kuccha construction, improper water supply, low household income houses were also more likely to have a malaria case and the odds doubled in houses with no toilet facilities. Conclusion Based on the results of the study, it has been found that there is an association between the odds of having malaria cases and different household variables such as age, gender, number of members, number of rooms, caste, type of house, toilet facilities, water supply, cattle sheds, agricultural land, income, and vector control interventions. Therefore, a better understanding of the association of various risk factors that influence the incidence of malaria is required to design and/or deploy effective policies and strategies for malaria elimination. The results of this study suggest that appropriate economic and environmental interventions even in low-income and poverty-stricken tribal areas could have huge impact on the success of the national malaria elimination goals.


2020 ◽  
Author(s):  
Ilinca I. Ciubotariu ◽  
Christine M. Jones ◽  
Tamaki Kobayashi ◽  
Thierry Bobanga ◽  
Mbanga Muleba ◽  
...  

AbstractDespite ongoing malaria control efforts implemented throughout sub-Saharan Africa, malaria remains an enormous public health concern. Current interventions such as indoor residual spraying with insecticides and use of insecticide-treated bed nets are aimed at targeting the key malaria vectors that are primarily endophagic and endophilic. While these control measures have resulted in a substantial decline in malaria cases and continue to impact indoor transmission, the importance of alternative vectors for malaria transmission has been largely neglected. Anopheles coustani, an understudied vector of malaria, is a species previously thought to exhibit mostly zoophilic behavior. However, recent studies from across Africa bring to light the contribution of this and ecologically similar anopheline species to human malaria transmission. Like many of these understudied species, An. coustani has greater anthropophilic tendencies than previously appreciated, is often both endophagic and exophagic, and carries Plasmodium falciparum sporozoites. These recent developments highlight the need for more studies throughout the geographic range of this species and the potential need to control this vector. The aim of this study was to explore the genetic variation of An. coustani mosquitoes and the potential of this Anopheles species to contribute to malaria parasite transmission in high transmission settings in Nchelenge District, Zambia, and the Kashobwe and Kilwa Health Zones in Haut-Katanga Province, the Democratic Republic of the Congo (DRC). Morphologically identified An. coustani specimens that were trapped outdoors in these study sites were analyzed by PCR and sequencing for species identification and blood meal sources, and malaria parasite infection was determined by ELISA and qPCR. Fifty specimens were confirmed to be An. coustani by the analysis of mitochondrial DNA cytochrome c oxidase subunit I (COI) and ribosomal internal transcribed spacer region 2 (ITS2). Further, maximum likelihood phylogenetic analysis of COI and ITS2 sequences revealed two distinct phylogenetic groups within this relatively small regional collection. Our findings indicate that both An. coustani groups have anthropophilic and exophagic habits and come into frequent contact with P. falciparum, suggesting that this potential alternative malaria vector might elude current vector controls in Northern Zambia and Southern DRC. This study sets the groundwork for more thorough investigations of bionomic characteristics and genetic diversity of An. coustani and its contribution to malaria transmission in these regions.


Author(s):  
Sara E. Canavati ◽  
Gerard C. Kelly ◽  
Thuan Huu Vo ◽  
Long Khanh Tran ◽  
Thang Duc Ngo ◽  
...  

Strengthening vector control measures among mobile and migrant populations (MMPs) is crucial to malaria elimination, particularly in areas with multidrug-resistant malaria. Although a global priority, providing access and ensuring high coverage of available tools such as long-lasting insecticidal nets (LLINs) among these vulnerable groups remains a significant challenge. We assessed mosquito net ownership, utilization, and preference among individuals who slept in a forest and/or on a farm against those residing only in village “home” settings in a priority malaria elimination area of Vietnam. Proportions of respondents owning bed nets were similar among forest, farm, and home sleeping sites, ranging between 96% and 98%. The proportion of respondents owning hammock nets was higher for the forest group (92%), whereas ownership of hammocks in general was significantly lower for the home group (55%). Most respondents (97%) preferred to bring hammock nets to their remote sleeping site, whereas a smaller proportion (25%) also considered bed nets as an option. Respondent preferences included thick hammock nets with zippers (53%), hammocks with a flip cover (17%), and thin hammock nets with zippers (15%), with none choosing polyethylene (hard) LLINs. Although there is high coverage and access to nets for this high-priority MMP, there was a noted gap between coverage and net use, potentially undermining the effectiveness of net-related interventions that could impact malaria prevention and elimination efforts in Vietnam. The design and material of nets are important factors for user preferences that appear to drive net use.


Sign in / Sign up

Export Citation Format

Share Document