scholarly journals Chemodynamic nanomaterials for cancer theranostics

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingqi Xin ◽  
Caiting Deng ◽  
Omer Aras ◽  
Mengjiao Zhou ◽  
Chunsheng Wu ◽  
...  

AbstractIt is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.

Author(s):  
Menghan Gao ◽  
Hong Deng ◽  
Weiqi Zhang

: Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44- targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat the cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progresses about HA-based multidrug nano-carriers for combination cancer therapy are summarized and its potential challenges for translational applications have been discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chung-Jen Chiang ◽  
Yan-Hong Hong

AbstractButyrate has a bioactive function to reduce carcinogenesis. To achieve targeted cancer therapy, this study developed bacterial cancer therapy (BCT) with butyrate as a payload. By metabolic engineering, Escherichia coli Nissle 1917 (EcN) was reprogrammed to synthesize butyrate (referred to as biobutyrate) and designated EcN-BUT. The adopted strategy includes construction of a synthetic pathway for biobutyrate and the rational design of central metabolism to increase the production of biobutyrate at the expense of acetate. With glucose, EcN-BUT produced primarily biobutyrate under the hypoxic condition. Furthermore, human colorectal cancer cell was administrated with the produced biobutyrate. It caused the cell cycle arrest at the G1 phase and induced the mitochondrial apoptosis pathway independent of p53. In the tumor-bearing mice, the injected EcN-BUT exhibited tumor-specific colonization and significantly reduced the tumor volume by 70%. Overall, this study opens a new avenue for BCT based on biobutyrate.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Hyun Ah Seo ◽  
Sokviseth Moeng ◽  
Seokmin Sim ◽  
Hyo Jeong Kuh ◽  
Soo Young Choi ◽  
...  

The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.


2020 ◽  
Author(s):  
Xia Ling ◽  
Letao Huang ◽  
Youzhen Li ◽  
Qing Wan ◽  
Zhiming Wang ◽  
...  

Chemotherapeutics with systemic administration usually suffer from low treatment efficacy and off-target toxicity. In contrary, the photoactivatable cancer theranostics can achieve image-guided precise control of therapeutic dose and location. However, the conventional photoactivatable chemotherapeutics usually require decoration of chemotherapeutics with additional photo-responsive groups through tedious synthetic procedures, which can lead to undesirable toxic byproducts and seriously restrict their applications. Herein, we propose a new strategy for photoactivatable caner theranostics based on photooxidative dehydrogenation reaction, which is only associating with water as the byproduct. To demonstrate the power of this strategy, we utilized the natural dihydrobenzo[c]phenanthridine alkaloids of DHCHE and DHSAN as photoactivatable theranostics to achieve selective imaging and killing of cancer cells by in situ transformation into nucleus-targeted CHE and SAN under light irradiation. Notably, CHE is featured with aggregation-induced emission (AIE) characteristics, which can be used for precise control of the photoactivatable therapeutic dose. This photoactivatable strategy based on dihydroalkaloids is thus promising for precise cancer treatment in clinic.<br>


2019 ◽  
Vol 26 (7) ◽  
pp. 479-493
Author(s):  
Desmond O. Acheampong

Development of cancers mostly involves more than one signal pathways, because of the complicated nature of cancer cells. As such, the most effective treatment option is the one that stops the cancer cells in their tracks by targeting these signal pathways simultaneously. This explains why therapeutic monoclonal antibodies targeted at cancers exert utmost activity when two or more are used as combination therapy. This notwithstanding, studies elsewhere have proven that when bispecific antibody (bsAb) is engineered from two conventional monoclonal antibodies or their chains, it produces better activity than when used as combination therapy. This therefore presents bispecific antibody (bsAb) as the appropriate and best therapeutic agent for the treatment of such cancers. This review therefore discusses the various engineering formats for bispecific antibodies (bsAbs) and their applications.


Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2461-2479
Author(s):  
Nayra M Kamel ◽  
Maged W Helmy ◽  
Magda W Samaha ◽  
Doaa Ragab ◽  
Ahmed O Elzoghby

Aim: Multicompartmental lipid–protein nanohybrids (MLPNs) were developed for combined delivery of the anticancer drugs tretinoin (TRE) and genistein (GEN) as synergistic therapy of lung cancer. Materials & methods: The GEN-loaded lipid core was first prepared and then coated with TRE-loaded zein shell via nanoprecipitation. Results: TRE/GEN-MLPNs demonstrated a size of 154.5 nm. In situ ion pair formation between anionic TRE and the cationic stearyl amine improved the drug encapsulation with enhanced stability of MLPNs. TRE/GEN-coloaded MLPNs were more cytotoxic against A549 cancer cells compared with combined free GEN/TRE. In vivo, lung cancer bearing mice treated with TRE/GEN-MLPNs displayed higher apoptotic caspase activation compared with mice-treated free combined GEN/TRE. Conclusion: TRE/GEN-MLPNs might serve as a promising parenteral nanovehicles for lung cancer therapy.


2020 ◽  
Author(s):  
Xia Ling ◽  
Letao Huang ◽  
Youzhen Li ◽  
Qing Wan ◽  
Zhiming Wang ◽  
...  

Chemotherapeutics with systemic administration usually suffer from low treatment efficacy and off-target toxicity. In contrary, the photoactivatable cancer theranostics can achieve image-guided precise control of therapeutic dose and location. However, the conventional photoactivatable chemotherapeutics usually require decoration of chemotherapeutics with additional photo-responsive groups through tedious synthetic procedures, which can lead to undesirable toxic byproducts and seriously restrict their applications. Herein, we propose a new strategy for photoactivatable caner theranostics based on photooxidative dehydrogenation reaction, which is only associating with water as the byproduct. To demonstrate the power of this strategy, we utilized the natural dihydrobenzo[c]phenanthridine alkaloids of DHCHE and DHSAN as photoactivatable theranostics to achieve selective imaging and killing of cancer cells by in situ transformation into nucleus-targeted CHE and SAN under light irradiation. Notably, CHE is featured with aggregation-induced emission (AIE) characteristics, which can be used for precise control of the photoactivatable therapeutic dose. This photoactivatable strategy based on dihydroalkaloids is thus promising for precise cancer treatment in clinic.<br>


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85763-85772 ◽  
Author(s):  
Archita Ghoshal ◽  
Upashi Goswami ◽  
Asif Raza ◽  
Arun Chattopadhyay ◽  
Siddhartha Sankar Ghosh

Targeting a specific pathway aberrantly upregulated in cancer cells has shown immense potential in cancer therapy.


Author(s):  
Qiusheng Wang ◽  
Ziyun He ◽  
Hai Zhu ◽  
Wenxia Gao ◽  
Nan Zhang ◽  
...  

A peptide/DNA nanocomplex was developed to targeted delivering chemotherapeutics and photosensitizer to cancer cells for efficient combination therapy. Chemotherapeutic drug doxorubicin (DOX) and photosensitizer 5, 10, 15, 20-tetra (1-methylpyridine-4-yl) porphyrin...


Sign in / Sign up

Export Citation Format

Share Document