scholarly journals Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Wenjuan Zhou ◽  
Xian Li ◽  
Jun Ren ◽  
Guangyu Ji ◽  
...  
2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
O Rominiyi ◽  
A Vanderlinden ◽  
K Myers ◽  
N Gomez-Roman ◽  
D Dar ◽  
...  

Abstract Introduction Glioblastoma is the most common cancer arising within the brain. Despite surgery, followed by DNA-damaging chemoradiotherapy, average survival remains between 12-15 months. Unacceptable survival rates underline the need to develop preclinical research models which recapitulate features underpinning therapeutic resistance in patients, such as intratumoural heterogeneity and treatment resistant glioblastoma stem cell (GSC) subpopulations which demonstrate elevated DNA damage response (DDR) activity. Method Tumour specimens from patients were used to generate 2D and 3D scaffold-based GSC models, with a range of preclinical survival and molecular assays used to interrogate cancer biology and assess therapeutic responses. Result We have developed a ‘living biobank’ of 20+ ex-vivo GSC models which reflect key clinicopathological diversity. These models include residual disease models based on careful macrodissection of rare en-blocpartial lobectomy specimens to liberate parallel GSC lines from the tumour core and adjacent infiltrated brain, to represent cells typically left behind after surgery. Therapeutic strategies targeting fundamental DDR processes demonstrate preclinical efficacy, for example dual inhibition of ATR and the FA DNA damage repair pathways elicits profound radiosensitisation (sensitiser enhancement ratio of 3.23 (3.03-3.49, 95%-CI)) with evidence of delayed DNA damage repair on single-cell gel electrophoresis. Finally, characterisation of our surgically-relevant resected and residual models reveals numerous divergent properties including elevated stem cell marker expression in residual models (p=0.0021), which may partially explain treatment resistance in disease left behind after surgery. Conclusion Our living biobank represents a useful resource for preclinical glioblastoma research and demonstrates the value of partnership between surgeons and laboratory-based scientists. Take-home message Our living biobank represents a useful resource for preclinical glioblastoma research and demonstrates the value of partnership between surgeons and laboratory-based scientists.


2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Qi Cui ◽  
Su Yang ◽  
Peng Ye ◽  
E. Tian ◽  
Guoqiang Sun ◽  
...  

2021 ◽  
Author(s):  
Aifeng Liu ◽  
Jixin Chen ◽  
Shuwei Gong ◽  
Qiang Wei ◽  
Ye Yuan

Abstract The main role of the scaffold materials is to enable cells to survive in the scaffold binding as while as to further promote their proliferation and differentiation ability. For mesenchymal stem cell, the scaffold could provide an environment for them to maintain their phenotype, and synthesize all necessary molecules and proteins. Generally, scaffold materials for stem cell need to possess basic characteristics such as high porosity, large surface area, surface rigidity and biodegradability. Thus, the two-dimensional graphene oxide (GO) with oxygen-containing functional groups may be suitable scaffold materials for mesenchymal stem cell culture.MethodsIn this study, the effect of GO on the value-added differentiation activity of mesenchymal stem cell was systematically investigated. ResultsIt was found that low concentration of GO and sufficient concentration of umbilical cord mesenchymal stem cells are suitable for the second Co-culture. Furthermore, the addition of hyaluronic acid will make this culture more evenly distributed. ConclusionsThe adsorption of GO on umbilical cord mesenchymal stem cells can also make the two closely linked, which avoids the impact of animal joint activities on cells.


2018 ◽  
Vol 6 (6) ◽  
pp. 979-990 ◽  
Author(s):  
Batzaya Nyambat ◽  
Chih-Hwa Chen ◽  
Pei-Chun Wong ◽  
Chih-Wei Chiang ◽  
Mantosh Kumar Satapathy ◽  
...  

3D Bioscaffold with relative high mechanical property was developed using rabbit ADSCs.


2018 ◽  
Vol 20 (suppl_3) ◽  
pp. iii289-iii289
Author(s):  
V V V Hira ◽  
J R Wormer ◽  
H Kakar ◽  
B Breznik ◽  
B van der Swaan ◽  
...  

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi229-vi229
Author(s):  
Briana Prager ◽  
Qi Xie ◽  
Jeremy Rich

Sign in / Sign up

Export Citation Format

Share Document