scholarly journals Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenchang Lv ◽  
Yufang Tan ◽  
Mingchen Xiong ◽  
Chongru Zhao ◽  
Yichen Wang ◽  
...  

Abstract Background N6-methyladenosine (m6A), the most abundant and reversible modification of mRNAs in eukaryotes, plays pivotal role in breast cancer (BC) tumorigenesis and progression. Circular RNAs (circRNAs) can act as tumor promoters or suppressors by microRNA (miRNA) sponges in BC. However, the underlying mechanism of circRNAs in BC progression via regulating m6A modulators remains unclear. Methods Prognostic m6A RNA methylation regulators were identified in 1065 BC patients from The Cancer Genome Atlas (TCGA) project. Differentially expressed (DE) miRNAs and DE circRNAs were identified between BC and normal samples in TCGA and GSE101123, respectively. MiRNA-mRNA interactive pairs and circRNA-miRNA interactive pairs were verified by MiRDIP and Circular RNA Interactome. GSEA, KEGG, and ssGSEA were executed to explore the potential biological and immune functions between HNRNPC-high and HNRNPC-low expression groups. qRT-PCR and Western blot were used to quantify the expression of HNRNPC and circBACH2 in MCF-7 and MDA-MB-231 cells. The proliferation of BC cells was assessed by CCK-8 and EdU assay. Results 2 m6A RNA methylation regulators with prognostic value, including HNRNPC and YTHDF3, were identified in BC patients. Then, the regulatory network of circRNA-miRNA-m6A modulators was constructed, which consisted of 2 DE m6A modulators (HNRNPC and YTHDF3), 12 DE miRNAs, and 11 DE circRNAs. Notably, BC patients with high expression of HNRNPC and low expression of hsa-miR-944 were correlated with late clinical stages and shorter survival times. Besides, the results from the KEGG inferred that the DE HNRNPC was associated with the MAPK signaling pathway in BC. Moreover, the circBACH2 (hsa_circ_0001625) was confirmed to act as hsa-miR-944 sponge to stimulate HNRNPC expression to promote BC cell proliferation via MAPK signaling pathway, thus constructing a circBACH2/hsa-miR-944/HNRNPC axis in BC. Conclusions Our findings decipher a novel circRNA-based m6A regulatory mechanism involved in BC progression, thus providing attractive diagnostic and therapeutic strategies for combating BC.

2021 ◽  
Author(s):  
Xiaowei Qiu ◽  
Qiaoli Zhang ◽  
Jingnan Xu ◽  
Xin Jiang ◽  
Xuewei Qi ◽  
...  

Abstract Background: N6-methyladenosine (m6A) methylation modification can affect the tumorigenesis, progression, and metastasis of breast cancer (BC). Up to now, a prognostic model based on m6A methylation regulators for BC is still lacking. This study aimed to construct an accurate prediction prognosis model by m6A methylation regulators for BC patients.Methods: After processing of The Cancer Genome Atlas (TCGA) datasets, the differential expression and correlation analysis of m6A RNA methylation regulators were applied. Next, tumor samples were clustered into different groups and clinicopathologic features in different clusters were explored. By univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) analysis, m6A regulators with prognostic value were identified to develop a prediction model. Furthermore, we constructed and validated a predictive nomogram to predict the prognosis of BC patients.Results: 19 m6A related genes were extracted and 908 BC patients enrolled from TCGA dataset. After univariate Cox and LASSO analysis, 3 m6A RNA methylation regulators (YTHDF3, ZC3H13 and HNRNPC) were selected to establish the prognosis model based on median risk score (RS) in training and validation cohort. With the increasing of RS, the expression levels of YTHDF3 and ZC3H13 were individually elevated, while the HNRNPC expressed decreasingly. By survival analysis and Receiver Operating Characteristic (ROC) curve, we found that the overall survival (OS) of high-risk group was significantly shorter than that of the low-risk group based on Kaplan-Meier (KM) analysis in each cohort. Univariate and multivariate analysis identified the RS, age, and pathological stage are independent prognostic factors. A nomogram was constructed to predict 1- and 3-year OS and the calibration plots validate the performance. The C-index of nomogram reached 0.757 (95% CI:0.7-0.814) in training cohort and 0.749 (95% CI:0.648-0.85) in validation cohort, respectively.Conclusions: We successfully constructed a predictive prognosis model by m6A RNA methylation regulators. These results indicated that the m6A RNA methylation regulators are potential therapeutic targets of BC patients.


2020 ◽  
Vol Volume 14 ◽  
pp. 2667-2684 ◽  
Author(s):  
Xing Zhou ◽  
Xingchun Wu ◽  
Luhui Qin ◽  
Shunyu Lu ◽  
Hongliang Zhang ◽  
...  

Author(s):  
Xiaowen Chen ◽  
Jianli Chen

This study intended to investigate the effects of miR-3188 on breast cancer and to reveal the possible molecular mechanisms. miR-3188 was upregulated and TUSC5 was downregulated in breast cancer tissues and MCF-7 cells compared to normal tissue and MCF-10 cells. After MCF-7 cells were transfected with miR-3188 inhibitor, cell proliferation and migration were inhibited, whereas apoptosis was promoted. Luciferase reporter assay suggested that TUSC5 was a target gene of miR-3188. In addition, miR-3188 overexpression increased the p-p38 expression, while miR-3188 suppression decreased the p-p38 expression significantly. miR-3188 regulated breast cancer progression via the p38 MAPK signaling pathway. In conclusion, miR-3188 affects breast cancer cell proliferation, apoptosis, and migration by targeting TUSC5 and activating the p38 MAPK signaling pathway. miR-3188 may serve as a potential therapeutic agent for the treatment of breast cancer.


2021 ◽  
Vol 9 (2) ◽  
pp. 104-104
Author(s):  
Yun Cao ◽  
Chengyu Chu ◽  
Xiaoyan Li ◽  
Siwen Gu ◽  
Qiang Zou ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Fatemeh Khojasteh Poor ◽  
Mona Keivan ◽  
Mohammad Ramazii ◽  
Farhoodeh Ghaedrahmati ◽  
\unskip\break Amir Anbiyaiee ◽  
...  

Breast cancer (BC) is the most common cancer and the prevalent type of malignancy among women. Multiple risk factors, including genetic changes, biological age, dense breast tissue, and obesity are associated with BC. The mitogen-activated protein kinases (MAPK) signaling pathway has a pivotal role in regulating biological functions such as cell proliferation, differentiation, apoptosis, and survival. It has become evident that the MAPK pathway is associated with tumorigenesis and may promote breast cancer development. The MAPK/RAS/RAF cascade is closely associated with breast cancer. RAS signaling can enhance BC cell growth and progression. B-Raf is an important kinase and a potent RAF isoform involved in breast tumor initiation and differentiation. Depending on the reasons for cancer, there are different strategies for treatment of women with BC. Till now, several FDA-approved treatments have been investigated that inhibit the MAPK pathway and reduce metastatic progression in breast cancer. The most common breast cancer drugs that regulate or inhibit the MAPK pathway may include Farnesyltransferase inhibitors (FTIs), Sorafenib, Vemurafenib, PLX8394, Dabrafenib, Ulixertinib, Simvastatin, Alisertib, and Teriflunomide. In this review, we will discuss the roles of the MAPK/RAS/RAF/MEK/ERK pathway in BC and summarize the FDA-approved prescription drugs that target the MAPK signaling pathway in women with BC.


2018 ◽  
Vol 14 (6) ◽  
pp. 622-632 ◽  
Author(s):  
Tao Zhang ◽  
Kangfeng Jiang ◽  
Xinying Zhu ◽  
Gan Zhao ◽  
Haichong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document