scholarly journals Curcumin prevents high-fat diet-induced hepatic steatosis in ApoE−/− mice by improving intestinal barrier function and reducing endotoxin and liver TLR4/NF-κB inflammation

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Dan Feng ◽  
Jun Zou ◽  
Dongfang Su ◽  
Haiyan Mai ◽  
Shanshan Zhang ◽  
...  

Abstract Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and has become a public health concern worldwide. The hallmark of NAFLD is hepatic steatosis. Therefore, there is an urgent need to develop new therapeutic strategies that are efficacious and have minimal side effects in hepatic steatosis and NAFLD treatment. The present study aimed to investigate the effect of dietary supplement of curcumin on high-fat diet (HFD)-induced hepatic steatosis and the underlying mechanism. Methods ApoE−/− mice were fed a normal diet, high-fat diet (HFD) or HFD supplemented with curcumin (0.1% w/w) for 16 weeks. Body and liver weight, blood biochemical. parameters, and liver lipids were measured. Intestinal permeability, hepatic steatosis and mRNA and protein expressions of TLR4-related inflammatory signaling molecule were analyzed. Results The administration of curcumin significantly prevented HFD-induced body weight gain and reduced liver weight. Curcumin attenuated hepatic steatosis along with improved serum lipid profile. Moreover, curcumin up-regulated the expression of intestinal tight junction protein zonula occluden-1 and occludin, which further improved gut barrier dysfunction and reduced circulating lipopolysaccharide levels. Curcumin also markedly down-regulated the protein expression of hepatic TLR4 and myeloid differentiation factor 88 (MyD88), inhibited p65 nuclear translocation and DNA binding activity of nuclear factor-κB (NF-κB) in the liver. In addition, the mRNA expression of hepatic tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) as well as the plasma levels of TNF-α and IL-1β were also lowered by curcumin treatment. Conclusion These results indicated that curcumin protects against HFD-induced hepatic steatosis by improving intestinal barrier function and reducing endotoxin and liver TLR4/NF-κB inflammation. The ability of curcumin to inhibit hepatic steatosis portrayed its potential as effective dietry intervention for NAFLD prevention.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1139 ◽  
Author(s):  
Qihui Luo ◽  
Dongjing Cheng ◽  
Chao Huang ◽  
Yifan Li ◽  
Chengjie Lao ◽  
...  

Background: The damage to intestinal barrier function plays an important role in the development of obesity and associated diseases. Soy isoflavones are effective natural active components for controlling obesity and reducing the level of blood lipid. Here, we explored whether these effects of soy isoflavones were associated with the intestinal barrier function. Methods and Results: The obese rat models were established by high fat diet feeding. Then, those obese rats were supplemented with soy isoflavones at different doses for 4 weeks. Our results showed that obesity induced the expressions of pro-inflammatory cytokines, decreased the anti-inflammatory cytokine (IL-10) expression, elevated intestinal permeability, altered gut microbiota and exacerbated oxidative damages in colon. The administration of soy isoflavones reversed these changes in obese rats, presenting as the improvement of intestinal immune function and permeability, attenuation of oxidative damage, increase in the fraction of beneficial bacteria producing short-chain fatty acids and short-chain fatty acid production, and reduction in harmful bacteria. Furthermore, soy isoflavones blocked the expressions of TLR4 and NF-κB in the colons of the obese rats. Conclusions: Soy isoflavones could improve obesity through the attenuation of intestinal oxidative stress, recovery of immune and mucosal barrier, as well as re-balance of intestinal gut microbiota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Han Tang ◽  
Marta Melis ◽  
Karen Mai ◽  
Lorraine J. Gudas ◽  
Steven E. Trasino

Alcohol liver disease (ALD) is a major cause of liver-related mortality globally, yet there remains an unmet demand for approved ALD drugs. The pathogenesis of ALD involves perturbations to the intestinal barrier and subsequent translocation of bacterial endotoxin that, acting through toll-like receptor 4 (TLR4), promotes hepatic inflammation and progression of ALD. In the present study we investigated the ability of fenretinide (Fen) [N-(4-hydroxyphenyl) retinamide], a synthetic retinoid with known anti-cancer and anti-inflammatory properties, to modulate intestinal permeability and clinical hallmarks of ALD in a mouse model of chronic ethanol (EtOH) exposure. Our results show that EtOH-treated mice had reductions in mRNA and protein expression of intestinal tight junction proteins, including claudin one and occludin, and increases in intestinal permeability and endotoxemia compared to pair-fed mice. Also, EtOH-treated mice had marked increases in hepatic steatosis, liver injury, and expression of pro-inflammatory mediators, including TNF-α, and TLR4-positive macrophages, Kupffer cells, and hepatocytes in the intestines and liver, respectively. In contrast, EtOH + Fen-treated mice were resistant to the effects of EtOH on promoting intestinal permeability and had higher intestinal protein levels of claudin one and occludin. Also, EtOH + Fen-treated mice had significantly lower plasma levels of endotoxin, and reductions in expression of TNF-α and TLR4 positive macrophages, Kupffer cells, and hepatocytes in the intestine and liver. Lastly, we found that EtOH + Fen-treated mice exhibited major reductions in hepatic triglycerides, steatosis, and liver injury compared to EtOH-treated mice. Our findings are the first to demonstrate that Fen possesses anti-ALD properties, potentially through modulation of the intestinal barrier function, endotoxemia, and TLR4-mediated inflammation. These data warrant further pre-clinical investigations of Fen as a potential anti-ALD drug.


2020 ◽  
Vol 11 (4) ◽  
pp. 3167-3179 ◽  
Author(s):  
Yuxin Cheng ◽  
Ting Wu ◽  
Shuxin Tang ◽  
Fuqiang Liang ◽  
Yajing Fang ◽  
...  

The barrier-improving functions of fermented blueberry pomace (FBP) and its potential mechanism were investigated in this study.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2701 ◽  
Author(s):  
Xiao-yu Zhang ◽  
Kang Yi ◽  
Jiang Chen ◽  
Rui-ping Li ◽  
Jie Xie ◽  
...  

Natural products generally contain complex and multiple bioactive compounds that are responsible for the effects on health through complicated synergistic and/or suppressive actions. As an important raw material of local ethnic minority tea, ethnomedicines and food supplements in southwestern areas of China, Docynia indica (Wall.) Decne (DID) mainly consists of phlorizin (PHZ), which is the main active component. In this study, the holistic activities and the interactions of components of PHZ, non-phlorizin (NP) in the DID extract (DIDE) were evaluated. A rapid and effective high-speed counter-current chromatography (HSCCC) was performed to knock out PHZ from DIDE and the purity of PHZ was 96.01% determined by HPLC, with a recovery rate of 96.76%. After 13 weeks of treatment course in a high-fat diet (HFD)-induced obese mice model, the results revealed that the DIDE and PHZ significantly decreased weight gain, blood lipid levels, hyperplasia of adipocytes and alleviated inflammation (p < 0.05). Both DIDE and PHZ improves insulin resistance (p < 0.001). Meanwhile, the intestinal barrier function was improved compared to HFD group, through the determination of serum lipopolysaccharides (LPS), glucagon-likepeptide-2 (GLP-2) and hematoxylin-eosin staining of jejunum. Interestingly, after NP treatment, the metabolic syndrome of the HFD-induced obesity appeared to have a similar improvement. All the experiments showed that there is a synergistic weakening phenomenon when PHZ and NP interact with each other in the mixed state. In conclusion, for the PHZ and NP showing a good effect on anti-obesity, anti-inflammation, and intestinal barrier function, DIDE could be a good source of functional food to prevent obesity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Minlan Yuan ◽  
Xiao Chen ◽  
Tianxia Su ◽  
Yan Zhou ◽  
Xiaohong Sun

Background: Impaired intestinal integrity and barrier function is associated with various diseases, including inflammatory bowel disease and metabolic syndrome. In recent years, plant-derived polyphenols have attracted much attention on regulating intestinal barrier function. Kiwifruit was recorded as a traditional Chinese medicine which can treat gastrointestinal diseases, but the mechanism was still unclear. In this study we investigated the effects of kiwifruit polyphenol extracts (KPE) on high fat diet induced intestinal permeability and its possible mechanism.Results: Dietary supplementation of KPE with 50 or 100 mg/kg bw could inhibit the increase of intestinal permeability caused by HFD and promote the expression of tight junction protein (Claudin-1, Occludin and ZO-1). From microbial diversity and RT-PCR, KPE administration reshaping gut microbiome, the relative abundance of Lactobacillus and Bifidobacterium were increased, and the relative abundance of Clostridium and Desulfovibrionaceae were decreased. The changes in microbe may influence intestinal inflammatory status. Then the expression of TLRs and cytokines were detected. KPE supplementation showed anti-inflammatory effect, the expression of IL-10 was increased and the expression of TLR-2, TLR-4, TNF-α and IL-1β were decreased. Correlation analysis indicated that the expression of tight junction protein was negative correlation with TLR-2, TLR-4, TNF-α and IL-1β expression, but positively correlated with Bacteroidete, Bifidobacterium and IL-10 expression; the expression of Bacteroidete, Lactobacillusand and Bifidobacterium were negative correlation with TLR4, TNF-α, and IL-1β expression.Conclusion: KPE treatment relieve the intestinal damage caused by HFD, which was related to the regulation of Bacteroidete, Lactobacillusand, and Bifidobacterium expression and inhibit intestinal inflammation. KPE could be a functional component for preventing gut damage and its related disease.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1659
Author(s):  
Finn Jung ◽  
Katharina Burger ◽  
Raphaela Staltner ◽  
Annette Brandt ◽  
Sebastian Mueller ◽  
...  

Changes in intestinal microbiome and barrier function are critical in the development of alcohol-related liver disease (ALD). Here, we determined the effects of a one-week alcohol withdrawal on parameters of intestinal barrier function in heavy drinkers with ALD in comparison to healthy non-drinkers (controls). In serum samples of 17 controls (m = 10/f = 7) and 37 age-matched ALD patients (m = 26/f = 11) undergoing a one-week alcohol withdrawal, markers of liver health and intestinal barrier function were assessed. Liver damage, e.g., fibrosis and hepatic steatosis, were assessed using FibroScan. Before alcohol withdrawal, markers of liver damage, lipopolysaccharide binding protein (LBP) and overall TLR4/TLR2 ligands in serum were significantly higher in ALD patients than in controls, whereas intestinal fatty acid binding protein (I-FABP) and zonulin protein concentrations in serum were lower. All parameters, with the exception of LBP, were significantly improved after alcohol withdrawal; however, not to the level of controls. Our data suggest that one-week of abstinence improves markers of intestinal barrier function and liver health in ALD patients.


2013 ◽  
Vol 305 (2) ◽  
pp. E293-E304 ◽  
Author(s):  
Masateru Ushio ◽  
Yoshihiko Nishio ◽  
Osamu Sekine ◽  
Yoshio Nagai ◽  
Yasuhiro Maeno ◽  
...  

Nonalcoholic fatty liver disease is the most frequent liver disease. Ezetimibe, an inhibitor of intestinal cholesterol absorption, has been reported to ameliorate hepatic steatosis in human and animal models. To explore how ezetimibe reduces hepatic steatosis, we investigated the effects of ezetimibe on the expression of lipogenic enzymes and intestinal lipid metabolism in mice fed a high-fat or a high-fructose diet. CBA/JN mice were fed a high-fat diet or a high-fructose diet for 8 wk with or without ezetimibe. High-fat diet induced hepatic steatosis accompanied by hyperinsulinemia. Treatment with ezetimibe reduced hepatic steatosis, insulin levels, and glucose production from pyruvate in mice fed the high-fat diet, suggesting a reduction of insulin resistance in the liver. In the intestinal analysis, ezetimibe reduced the expression of fatty acid transfer protein-4 and apoB-48 in mice fed the high-fat diet. However, treatment with ezetimibe did not prevent hepatic steatosis, hyperinsulinemia, and intestinal apoB-48 expression in mice fed the high-fructose diet. Ezetimibe decreased liver X receptor-α binding to the sterol regulatory element-binding protein-1c promoter but not expression of carbohydrate response element-binding protein and fatty acid synthase in mice fed the high-fructose diet, suggesting that ezetimibe did not reduce hepatic lipogenesis induced by the high-fructose diet. Elevation of hepatic and intestinal lipogenesis in mice fed a high-fructose diet may partly explain the differences in the effect of ezetimibe.


Sign in / Sign up

Export Citation Format

Share Document