scholarly journals Long-chain saturated fatty acid species are not toxic to human pancreatic β-cells and may offer protection against pro-inflammatory cytokine induced β-cell death

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Patricia Thomas ◽  
Kaiyven A. Leslie ◽  
Hannah J. Welters ◽  
Noel G. Morgan

AbstractObesity is a major risk factor for type 2 diabetes (T2D) although the causal links remain unclear. A feature shared by both conditions however is systemic inflammation and raised levels of circulating fatty acids (FFA). It is widely believed that in obese individuals genetically prone to T2D, elevated levels of plasma FFA may contribute towards the death and dysfunction of insulin-producing pancreatic β-cells in a process of (gluco)lipotoxicity. In support of this, in vitro studies have shown consistently that long-chain saturated fatty acids (LC-SFA) are toxic to rodent β-cells during chronic exposure (> 24 h). Conversely, shorter chain SFA and unsaturated species are well tolerated, suggesting that toxicity is dependent on carbon chain length and/or double bond configuration. Despite the wealth of evidence implicating lipotoxicity as a means of β-cell death in rodents, the evidence that a similar process occurs in humans is much less substantial. Therefore, the present study has evaluated the effects of chronic exposure to fatty acids of varying chain length and degree of saturation, on the viability of human β-cells in culture. We have also studied the effects of a combination of fatty acids and pro-inflammatory cytokines. Strikingly, we find that LC-FFA do not readily promote the demise of human β-cells and that they may even offer a measure of protection against the toxic effects of pro-inflammatory cytokines. Therefore, these findings imply that a model in which elevated circulating LC-FFA play a direct role in mediating β-cell dysfunction and death in humans, may be overly simplistic.

2020 ◽  
Author(s):  
Patricia Thomas ◽  
Kaiyven A Leslie ◽  
Hannah J Welters ◽  
Noel G Morgan

Abstract Obesity is a major risk factor for type 2 diabetes (T2D) although the causal links remain unclear. A feature shared by both conditions however is systemic inflammation and raised levels of circulating fatty acids (FFA). It is widely believed that in obese individuals genetically prone to T2D, elevated levels of plasma FFA may contribute towards the death and dysfunction of insulin-producing pancreatic β-cells in a process of (gluco)lipotoxicity. In support of this, in vitro studies have shown consistently that long-chain saturated fatty acids (LC-SFA) are toxic to rodent β-cells during chronic exposure (>24h). Conversely, shorter chain SFA and unsaturated species are well tolerated, suggesting that toxicity is dependent on carbon chain length and/or double bond configuration. Despite the wealth of evidence implicating lipotoxicity as a means of β-cell death in rodents, the evidence that a similar process occurs in humans is much less substantial. Therefore, the present study has evaluated the effects of chronic exposure to fatty acids of varying chain length and degree of saturation, on the viability of human β-cells in culture. We have also studied the effects of a combination of fatty acids and pro-inflammatory cytokines. Strikingly, we find that LC-FFA do not readily promote the demise of human β-cells and that they may even offer a measure of protection against the toxic effects of pro-inflammatory cytokines. Therefore, these findings imply that a model in which elevated circulating LC-FFA play a direct role in mediating β-cell dysfunction and death in humans, may be overly simplistic.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22485 ◽  
Author(s):  
J. Jason Collier ◽  
Susan J. Burke ◽  
Mary E. Eisenhauer ◽  
Danhong Lu ◽  
Renee C. Sapp ◽  
...  

2010 ◽  
Vol 30 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Marta Michalska ◽  
Gabriele Wolf ◽  
Reinhard Walther ◽  
Philip Newsholme

Various pancreatic β-cell stressors including cytokines and saturated fatty acids are known to induce oxidative stress, which results in metabolic disturbances and a reduction in insulin secretion. However, the key mechanisms underlying dysfunction are unknown. We investigated the effects of prolonged exposure (24 h) to pro-inflammatory cytokines, H2O2 or PA (palmitic acid) on β-cell insulin secretion, ATP, the NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) component p47phox and iNOS (inducible nitric oxide synthase) levels using primary mouse islets or clonal rat BRIN-BD11 β-cells. Addition of a pro-inflammatory cytokine mixture [IL-1β (interleukin-1β), TNF-α (tumour necrosis factor-α) and IFN-γ (interferon-γ)] or H2O2 (at sub-lethal concentrations) inhibited chronic (24 h) levels of insulin release by at least 50% (from islets and BRIN-BD11 cells), while addition of the saturated fatty acid palmitate inhibited acute (20 min) stimulated levels of insulin release from mouse islets. H2O2 decreased ATP levels in the cell line, but elevated p47phox and iNOS levels as did cytokine addition. Similar effects were observed in mouse islets with respect to elevation of p47phox and iNOS levels. Addition of antioxidants SOD (superoxide dismutase), Cat (catalase) and NAC (N-acetylcysteine) attenuated H2O2 or the saturated fatty acid palmitate-dependent effects, but not cytokine-induced dysfunction. However, specific chemical inhibitors of NADPH oxidase and/or iNOS appear to significantly attenuate the effects of cytokines, H2O2 or fatty acids in islets. While pro-inflammatory cytokines are known to increase p47phox and iNOS levels in β-cells, we now report that H2O2 can increase levels of the latter two proteins, suggesting a key role for positive-feedback redox sensitive regulation of β-cell dysfunction.


2006 ◽  
Vol 112 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Philip Newsholme ◽  
Deirdre Keane ◽  
Hannah J. Welters ◽  
Noel G. Morgan

Both stimulatory and detrimental effects of NEFAs (non-esterified fatty acids) on pancreatic β-cells have been recognized. Acute exposure of the pancreatic β-cell to high glucose concentrations and/or saturated NEFAs results in a substantial increase in insulin release, whereas chronic exposure results in desensitization and suppression of secretion, followed by induction of apoptosis. Some unsaturated NEFAs also promote insulin release acutely, but they are less toxic to β-cells during chronic exposure and can even exert positive protective effects. Therefore changes in the levels of NEFAs are likely to be important for the regulation of β-cell function and viability under physiological conditions. In addition, the switching between endogenous fatty acid synthesis or oxidation in the β-cell, together with alterations in neutral lipid accumulation, may have critical implications for β-cell function and integrity. Long-chain acyl-CoA (formed from either endogenously synthesized or exogenous fatty acids) controls several aspects of β-cell function, including activation of specific isoenzymes of PKC (protein kinase C), modulation of ion channels, protein acylation, ceramide formation and/or NO-mediated apoptosis, and transcription factor activity. In this review, we describe the effects of exogenous and endogenous fatty acids on β-cell metabolism and gene and protein expression, and have explored the outcomes with respect to insulin secretion and β-cell integrity.


2010 ◽  
Vol 206 (2) ◽  
pp. 183-193 ◽  
Author(s):  
José Edgar Nicoletti-Carvalho ◽  
Tatiane C Araújo Nogueira ◽  
Renata Gorjão ◽  
Carla Rodrigues Bromati ◽  
Tatiana S Yamanaka ◽  
...  

Unfolded protein response (UPR)-mediated pancreatic β-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against β-cell death induced by pro-inflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2α kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic β-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 175-185 ◽  
Author(s):  
Takeru Matsuda ◽  
Kevin Ferreri ◽  
Ivan Todorov ◽  
Yoshikazu Kuroda ◽  
Craig V. Smith ◽  
...  

Silymarin is a polyphenolic flavonoid that has a strong antioxidant activity and exhibits anticarcinogenic, antiinflammatory, and cytoprotective effects. Although its hepatoprotective effect has been well documented, the effect of silymarin on pancreatic β-cells is largely unknown. In this study, the effect of silymarin on IL-1β and/or interferon (IFN)-γ-induced β-cell damage was investigated using RINm5F cells and human islets. IL-1β and/or IFN-γ induced cell death in a time-dependent manner in RINm5F cells. The time-dependent increase in cytokine-induced cell death appeared to correlate with the time-dependent nitric oxide (NO) production. Silymarin dose-dependently inhibited both cytokine-induced NO production and cell death in RINm5F cells. Treatment of human islets with a combination of IL-1β and IFN-γ (IL-1β+IFN-γ), for 48 h and 5 d, resulted in an increase of NO production and the impairment of glucose-stimulated insulin secretion, respectively. Silymarin prevented IL-1β+IFN-γ-induced NO production and β-cell dysfunction in human islets. These cytoprotective effects of silymarin appeared to be mediated through the suppression of c-Jun NH2-terminal kinase and Janus kinase/signal transducer and activator of transcription pathways. Our data show a direct cytoprotective effect of silymarin in pancreatic β-cells and suggest that silymarin may be therapeutically beneficial for type 1 diabetes.


2017 ◽  
Vol 8 (11) ◽  
pp. 7604-7610 ◽  
Author(s):  
James Allen Frank ◽  
Dmytro A. Yushchenko ◽  
Nicholas H. F. Fine ◽  
Margherita Duca ◽  
Mevlut Citir ◽  
...  

Fatty acids activate GPR40 and K+ channels to modulate β-cell function.


2006 ◽  
Vol 3 (3) ◽  
pp. 365-372 ◽  
Author(s):  
John Zeqi Luo ◽  
Luguang Luo

American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2) has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism). To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β), (200 pg ml−1, a cytokine to induce β cell apoptosis) and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture) for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.


2008 ◽  
Vol 41 (1) ◽  
pp. 35-44 ◽  
Author(s):  
M Blandino-Rosano ◽  
G Perez-Arana ◽  
J M Mellado-Gil ◽  
C Segundo ◽  
M Aguilar-Diosdado

Pancreatic β-cell homeostasis is a balance between programmed cell death (apoptosis) and regeneration. Although autoimmune diabetes mellitus type 1 (DM1) is the most-studied cause of β-cell mass loss by pro-inflammatory cytokine-induced apoptosis, influences of a pro-inflammatory environment on β-cell regenerative response have been poorly studied. In this study, we assess the anti-proliferative effect of pro-inflammatory cytokines and glucose concentration on rat pancreatic β cells and the potential protective role of glucagon-like peptide (GLP-1). Apoptotic and proliferating islet cells were stained using the DeadEnd Fluorimetric TUNEL System and 5-bromo-2′-deoxyuridine label respectively, in the presence–absence of varying concentrations of glucose, pro-inflammatory cytokines, and GLP-1. The potential signaling pathways involved were evaluated by western blot. Considerable anti-proliferative effects of pro-inflammatory cytokines interleukin (IL)-1β, interferon (IFN)-γ, and tumour necrosis factor-α (TNF-α) were observed. The effects were synergistic and independent of glucose concentration, and appeared to be mediated by the inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation, the signaling pathway involved in β-cell replication. GLP-1 completely reversed the cytokine-induced inhibition of ERK phosphorylation and increased β-cell proliferation threefold in cytokine-treated cultures. While pro-inflammatory cytokines reduced islet cell ERK1/2 activation and β-cell proliferation in pancreatic islet culture, GLP-1 was capable of reversing this effect. These data suggest a possible pharmacological application of GLP-1 in the treatment of early stage DM1, to prevent the loss of pancreatic β cells as well as to delay the development of overt diabetes.


2007 ◽  
Vol 193 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Shin Tsunekawa ◽  
Naoki Yamamoto ◽  
Katsura Tsukamoto ◽  
Yuji Itoh ◽  
Yukiko Kaneko ◽  
...  

The aim of this study was to investigate the in vivo and in vitro effects of exendin-4, a potent glucagon-like peptide 1 agonist, on the protection of the pancreatic β-cells against their cell death. In in vivo experiments, we used β-cell-specific calmodulin-overexpressing mice where massive apoptosis takes place in their β-cells, and we examined the effects of chronic treatment with exendin-4. Chronic and s.c. administration of exendin-4 reduced hyperglycemia. The treatment caused significant increases of the insulin contents of the pancreas and islets, and retained the insulin-positive area. Dispersed transgenic islet cells lived only shortly, and several endoplasmic reticulum (ER) stress-related molecules such as immunoglobulin-binding protein (Bip), inositol-requiring enzyme-1α, X-box-binding protein-1 (XBP-1), RNA-activated protein kinase-like endoplasmic reticulum kinase, activating transcription factor-4, and C/EBP-homologous protein (CHOP) were more expressed in the transgenic islets. We also found that the spliced form of XBP-1, a marker of ER stress, was also increased in β-cell-specific calmodulin-overexpressing transgenic islets. In the quantitative real-time PCR analyses, the expression levels of Bip and CHOP were reduced in the islets from the transgenic mice treated with exendin-4. These findings suggest that excess of ER stress occurs in the transgenic β-cells, and the suppression of ER stress and resultant protection against cell death may be involved in the anti-diabetic effects of exendin-4.


Sign in / Sign up

Export Citation Format

Share Document