scholarly journals A low-cost automated growth chamber system for continuous measurements of gas exchange at canopy scale in dynamic conditions

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Nicole Salvatori ◽  
Alberti Giorgio ◽  
Onno Muller ◽  
Uwe Rascher ◽  
Alessandro Peressotti

Abstract Background Obtaining instantaneous gas exchanges data is fundamental to gain information on photosynthesis. Leaf level data are reliable, but their scaling up to canopy scale is difficult as they are acquired in standard and/or controlled conditions, while natural environments are extremely dynamic. Responses to dynamic environmental conditions need to be considered, as measurements at steady state and their related models may overestimate total carbon (C) plant uptake. Results In this paper, we describe an automatic, low-cost measuring system composed of 12 open chambers (60 × 60 × 150 cm; around 400 euros per chamber) able to measure instantaneous CO2 and H2O gas exchanges, as well as environmental parameters, at canopy level. We tested the system’s performance by simulating different CO2 uptake and respiration levels using a tube filled with soda lime or pure CO2, respectively, and quantified its response time and measurement accuracy. We have been also able to evaluate the delayed response due to the dimension of the chambers, proposing a method to correct the data by taking into account the response time ($${t}_{0}$$ t 0 ) and the residence time (τ). Finally, we tested the system by growing a commercial soybean variety in fluctuating and non-fluctuating light, showing the system to be fast enough to capture fast dynamic conditions. At the end of the experiment, we compared cumulative fluxes with total plant dry biomass. Conclusions The system slightly over-estimated (+ 7.6%) the total C uptake, even though not significantly, confirming its ability in measuring the overall CO2 fluxes at canopy scale. Furthermore, the system resulted to be accurate and stable, allowing to estimate the response time and to determine steady state fluxes from unsteady state measured values. Thanks to the flexibility in the software and to the dimensions of the chambers, even if only tested in dynamic light conditions, the system is thought to be used for several applications and with different plant canopies by mimicking different environmental conditions.

2021 ◽  
Author(s):  
Nicole Salvatori ◽  
Giorgio Alberti ◽  
Onno Muller ◽  
Uwe Rascher ◽  
Alessandro Peressotti

Abstract BackgroundObtaining instantaneous gas exchanges data is fundamental to gain information on photosynthesis. Leaf level data are reliable, but their scaling up to canopy scale is difficult as they are acquired in standard and/or controlled conditions, while natural environments are extremely dynamic. Responses to dynamic environmental conditions need to be considered, as measurements at steady state and their related models may overestimate total carbon (C) plant uptake.ResultsIn this paper, we describe an automatic, low-cost measuring system composed of 12 open chambers (60 x 60 x 150 cm; around 400 euros per chamber) able to measure instantaneous CO2 and H2O gas exchanges, as well as environmental parameters, at canopy level. We tested the system’s performance by simulating different CO2 uptake and respiration levels using a tube filled with soda lime or pure CO2, respectively, and quantified its response time and measurement accuracy. We have been also able to evaluate the delayed response due to the dimension of the chambers, proposing a method to correct the data by taking into account the response time (to) and the residence time (τ). Finally, we tested the system by growing a commercial soybean variety in fluctuating and non-fluctuating light, showing the system to be fast enough to capture fast dynamic conditions. At the end of the experiment, we compared cumulative fluxes with total plant dry biomass.ConclusionsThe system slightly over-estimated (+ 7.6%) the total C uptake, even though not significantly, confirming its ability in measuring the overall CO2 fluxes at canopy scale. Furthermore, the system resulted to be accurate and stable, allowing to estimate the response time and to determine steady state fluxes from unsteady state measured values. Thanks to the flexibility in the software and to the dimensions of the chambers, the system can be used for several applications and with different plant canopies by mimicking different (i.e. dynamic and static) environmental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


Author(s):  
Jing Li ◽  
Dingyong Yu ◽  
Huaxing Liu

The passive acoustic-based wave measurement via hydrophones is presented in this paper. It has the potential to measure non-intrusively, implement with low cost and with higher resolution. Details of experiments, real-time data recording and processing are described respectively. Particularly, the portable data acquisition system based on virtual instrument technique is designed to make the in situ measurement convenient and user-friendly. Special emphasis is put on FFT filtering technique to band pass the signal fast and efficiently. The key wave parameters, i.e. the mean wave period and the significant wave height, can be obtained from the comparatively safe and stable underwater by means of submerged hydrophones. Considering the pressure sensor has been widely used in the ocean wave measurement, it is deployed simultaneously to test the feasibility of the new system. The result shows that the present measuring system can give satisfactory measurement of significant wave heights and average wave periods in shallow water despite of the little deviation.


2018 ◽  
Vol 210 ◽  
pp. 03008
Author(s):  
Aparajita Das ◽  
Manash Pratim Sarma ◽  
Kandarpa Kumar Sarma ◽  
Nikos Mastorakis

This paper describes the design of an operative prototype based on Internet of Things (IoT) concepts for real time monitoring of various environmental conditions using certain commonly available and low cost sensors. The various environmental conditions such as temperature, humidity, air pollution, sun light intensity and rain are continuously monitored, processed and controlled by an Arduino Uno microcontroller board with the help of several sensors. Captured data are broadcasted through internet with an ESP8266 Wi-Fi module. The projected system delivers sensors data to an API called ThingSpeak over an HTTP protocol and allows storing of data. The proposed system works well and it shows reliability. The prototype has been used to monitor and analyse real time data using graphical information of the environment.


2020 ◽  
Author(s):  
Kyu Hye Choi ◽  
Han Hee Lee ◽  
Seung-Eun Jung ◽  
Kyung-Sin Park ◽  
Joo-Hyun O ◽  
...  

Abstract Background Early-stage primary gastrointestinal (GI) low-grade B-cell lymphoma shows good therapeutic response to primary radiotherapy. However, there is no clear guideline for the evaluation of response to radiation therapy currently. The aim of this study was to analyze the relationship between the best response time and the clinical course after radiotherapy. Methods Patients who underwent radiotherapy for treatment of primary GI low-grade B-cell lymphoma from September 2007 to December 2018 at Seoul St. Mary's Hospital were included. Early responders were defined by best response within 6 months after radiotherapy, and delayed responders after 6 months. Clinical and pathological factors associated with delayed response and survival analyses were performed to investigate the recurrence and survival during follow-up. Results A total of 43 patients were evaluated and the number of gastric mucosa-associated lymphoid tissue and duodenal follicular lymphoma was 36 and 7, respectively. All of 43 patients showed complete remission to radiotherapy and the best response time after radiotherapy was a median of 3 months. There were 8 delayed responders with a median duration of 8.9 months. Early and delayed responders were characterized by a significant difference in depth of invasion beyond the mucosal layer. Conclusions Delayed responders did not show differences in oncological outcomes compared with early responders. They were allowed to watch and wait for an additional 6 to 12 months without further treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Quoc Khanh Duong ◽  
Thanh Trung Trang ◽  
Thanh Long Pham

It is easy to realize that most robots do not move to the desired endpoint (Tool Center Point (TCP)) using high-resolution noncontact instrumentation because of manufacturing and assembly errors, transmission system errors, and mechanical wear. This paper presents a robot calibration solution by changing the endpoint trajectories while maintaining the robot’s control system and device usages. Two independent systems to measure the endpoint positions, the robot encoder and a noncontact measuring system with a high-resolution camera, are used to determine the endpoint errors. A new trajectory based on the measured errors will be built to replace the original trajectory. The results show that the proposed method can significantly reduce errors; moreover, this is a low-cost solution and easy to apply in practice and calibration can be done cyclically. The only requirement for this method is a noncontact measuring device with high-resolution and located independently with the robot in calibration.


Sign in / Sign up

Export Citation Format

Share Document