scholarly journals Salidroside promoted osteogenic differentiation of adipose-derived stromal cells through Wnt/β-catenin signaling pathway

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao-hua Li ◽  
Fu-ling Chen ◽  
Hong-lin Shen

Abstract Background Bone disease causes short-term or long-term physical pain and disability. It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs). Methods ADSCs were isolated and treated with different dose of Salidroside. Cell count kit-8 (CCK-8) assay was performed to assess the cell viability of ADSCs. Then, ALP and ARS staining were conducted to assess the early and late osteogenic capacity of ADSCs, respectively. Then, differentially expressed genes were obtained by R software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes were further analyzed. The expression of OCN, COL1A1, RUNX2, WNT3A, and β-catenin were measured by real-time PCR and Western blot analysis. Last, β-catenin was silenced by small interfering RNA. Results Salidroside significantly increased the ADSCs viability at a dose-response manner. Moreover, Salidroside enhanced osteogenic capacity of ADSCs, which are identified by enhanced ALP activity and calcium deposition. A total of 543 differentially expressed genes were identified between normal and Salidroside-treated ADSCs. Among these differentially expressed genes, 345 genes were upregulated and 198 genes were downregulated. Differentially expressed genes enriched in the Wnt/β-catenin signaling pathway. Western blot assay indicated that Salidroside enhanced the WNT3A and β-catenin expression. Silencing β-catenin partially reversed the promotion effects of Salidroside. PCR and Western blot results further confirmed these results. Conclusion Salidroside promoted osteogenic differentiation of ADSCs through Wnt/β-catenin signaling pathway.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Bing Jing ◽  
Hongjuan Ji ◽  
Rui Jiang ◽  
Jinlong Wang

Abstract Background Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. Methods MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 μg/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. Results Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. Conclusion The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Feng Gao ◽  
Sheng-Li Xia ◽  
Xiu-Hui Wang ◽  
Xiao-Xiao Zhou ◽  
Jun Wang

Abstract Background Osteoporosis is a common disease closely associated with aging. In this study, we aimed to investigate the role of Cornuside I in promoting osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the potential mechanism. Methods BMSCs were isolated and treated with different concentrations of Cornuside I (0, 10, 30, 60 μM). Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. RNA sequencing was performed on the isolated BMSCs with control and Cornuside I treatment. Differentially expressed genes were obtained by the R software. Alkaline phosphatase (ALP) staining and Alizarin Red Staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR and western blot were used to detect the expression of osteoblast markers. Results Cornuside I treatment significantly improved BMSC proliferation. The optimal dose of Cornuside I was 30 μM (P < 0.05). Cornuside I dose dependently increased the ALP activity and calcium deposition than control group (P < 0.05). A total of 704 differentially expressed genes were identified between Cornuside I and normal BMSCs. Cornuside I significantly increased the PI3K and Akt expression. Moreover, the promotion effects of Cornuside I on osteogenic differentiation of BMSCs were partially blocked by PI3K/Akt inhibitor, LY294002. Conclusion Cornuside I plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of PI3K/Akt signaling pathway.


2020 ◽  
Vol 10 (5) ◽  
pp. 709-718
Author(s):  
Na Zhang ◽  
Haifeng Xie ◽  
Yungang Wu ◽  
Yan Han ◽  
Xiaoyi Wang

Background: The purpose of the current study was to explore whether Pinoresinol diglucoside (PD) could relieve osteoporosis through promoting osteogenic differentiation by activating phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathway. Methods: Firstly, human bone marrow mesenchymal stem cells (hBMMSCs) and mouse embryo steoblast recursor cells (MC3T3-E1) were induced for osteogenic differentiation, and then the cells were subjected to 1 mol/l PD. Then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot assay were used to detect the expression of osteogenic marker genes/proteins such as bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), and Osterix. The activity of alkaline phosphatase (ALP) in cells was also detected. Cell viability was further detected by Cell Count Kit-8 (CCK-8), and cell apoptosis was detected by flow cytometer. Finally, the protein expression of p-AKT and AKT was detected by Western blot assay. Results: The results showed that osteogenic differentiation of hBMMSCs and MC3T3-E1 cells were successfully induced, evidenced by increased BMP2, Runx2, Osterix mRNA expression and ALP activity enhancement. The osteogenic differentiation of MC3T3-E1 cells and hBMMSCs was enhanced by PD administration. At the same time, PD promoted the viability of MC3T3-E1 cells and reduced the MC3T3-E1 cell apoptosis. In addition, PD increased the protein expression of p-AKT and the ratio of p-AKT/AKT in MC3T3-E1 cells, suggesting PI3K/AKT pathway activation. Conclusion: PD promoted osteogenic differentiation of hBMMSCs and MC3T3-E1 cells, and it could promoted osteoblast proliferation and inhibit apoptosis, thereby playing a protective role in osteoporosis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yue-wen Chang ◽  
Wen-jun Zhu ◽  
Wei Gu ◽  
Jun Sun ◽  
Zhi-qiang Li ◽  
...  

Abstract Background Osteoporosis is a common disease in aging populations. However, osteoporosis treatment is still challenging. Here, we aimed to investigate the role of neohesperidin (NEO) in osteoporosis progression and the potential mechanism. Methods Bone mesenchymal stem cells (BMSCs) were isolated and treated with different concentrations of NEO (0, 10, 30, 100 μM). Cell proliferation was analyzed by cell count kit-8 (CCK-8) assay. RNA-sequencing was performed on the isolated BMSCs with control and NEO treatment. Differentially expressed genes were obtained by R software. Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR was used to detect the expression of osteoblast markers. Western blot was used to evaluate the protein levels in BMSCs. Results NEO treatment significantly improved hBMSC proliferation at different time points, particularly when cells were incubated with 30 μM NEO (P < 0.05). NEO dose-dependently increased the ALP activity and calcium deposition than the control group (P < 0.05). A total of 855 differentially expressed genes were identified according to the significance criteria of log2 (fold change) > 1 and adj P < 0.05. DKK1 partially reversed the promotion effects of NEO on osteogenic differentiation of BMSCs. NEO increased levels of the β-catenin protein in BMSCs. Conclusion NEO plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of Wnt/β-catenin pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei-Li You ◽  
Zheng-Long Xu

Abstract Background Curculigoside is a natural phenolic glycoside compound produced by Curculigo orchioides Gaertn. This study aimed to explore the effects of curculigoside in promoting the osteogenic differentiation of adipose-derived stem cells (ADSCs) as well as the underlying mechanism. Methods ADSCs were treated with curculigoside at different concentrations (0 μmol/L, 1 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, and 20 μmol/L), and cell viability was assessed by CCK-8 assay. Then, the alkaline phosphatase (ALP) activity was determined, and alizarin red S (ARS) staining was performed to measure the extracellular mineralization of curculigoside. Information about protein-chemical interactions is provided by the search tool for interactions of chemicals (STITCH) database. Then, LY294002 was administered to explore the mechanism by which curculigoside promotes the osteogenic differentiation of ADSCs. Western blot assays were performed to assess changes in the expression of osteogenic-related markers and the phosphorylation of PI3K and AKT. Finally, we established an ovariectomized (OVX)-induced osteoporosis mouse model and administered curculigoside to explore the effects of curculigoside in preventing bone loss in vivo. Results The CCK-8 assay indicated that curculigoside did not induce cytotoxicity at a concentration of 5 μmol/L after 48 h. The ALP and ARS results revealed that the induced group had higher ALP activity and calcium deposition than the control group. Moreover, the curculigoside group exhibited increased biomineralization, ALP activity, and ARS staining compared to the induced and control groups, and these effects were partially inhibited by LY294002. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the target genes of curculigoside were mainly involved in the PI3K-Akt signaling pathway. PCR and western blot analysis showed that the expression of RUNX2, ALP, and Osterix was upregulated in curculigoside-treated ADSCs, but this effect was partially reversed by the PI3K inhibitor LY294002. Moreover, the curculigoside-treated group exhibited significantly increased phosphorylation of AKT to P-AKT compared with the osteogenic induction group. After treatment with curculigoside, the mice had a higher bone volume than the OVX mice, suggesting partial protection from cancellous bone loss. In addition, when LY294002 was added, the protective effects of curculigoside could be neutralized. Conclusions Curculigoside could induce the osteogenic differentiation of ADSCs and prevent bone loss in an OVX model through the PI3K/Akt signaling pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xu Gao ◽  
Jingya Dai ◽  
Guifang Li ◽  
Xinya Dai

Abstract Objective In this work, we investigated the effects of gambogic acid (GA) on lipopolysaccharide (LPS)-induced apoptosis and inflammation in a cell model of neonatal pneumonia. Method Human WI-38 cells were maintained in vitro and incubated with various concentrations of GA to examine WI-38 survival. GA-preincubated WI-38 cells were then treated with LPS to investigate the protective effects of GA on LPS-induced death, apoptosis and inflammation. Western blot assay was utilized to analyze the effect of GA on tropomyosin receptor kinase A (TrkA) signaling pathway in LPS-treated WI-38 cells. In addition, human AKT serine/threonine kinase 1 (Akt) gene was knocked down in WI-38 cells to further investigate the associated genetic mechanisms of GA in protecting LPS-induced inflammation and apoptosis. Results Pre-incubating WI-38 cells with low and medium concentrations GA protected LPS-induced cell death, apoptosis and inflammatory protein productions of IL-6 and MCP-1. Using western blot assay, it was demonstrated that GA promoted TrkA phosphorylation and Akt activation in LPS-treated WI-38 cells. Knocking down Akt gene in WI-38 cells showed that GA-associated protections against LPS-induced apoptosis and inflammation were significantly reduced. Conclusions GA protected LPS-induced apoptosis and inflammation, possibly through the activations of TrkA and Akt signaling pathway. This work may broaden our understanding on the molecular mechanisms of human neonatal pneumonia.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zeng-Hong Wu ◽  
Yun Tang ◽  
Hong Yu ◽  
Hua-Dong Li

AbstractBreast cancer (BC) affects the breast tissue and is the second most common cause of mortalities among women. Ferroptosis is an iron-dependent cell death mode that is characterized by intracellular accumulation of reactive oxygen species (ROS). We constructed a prognostic multigene signature based on ferroptosis-associated differentially expressed genes (DEGs). Moreover, we comprehensively analyzed the role of ferroptosis-associated miRNAs, lncRNAs, and immune responses. A total of 259 ferroptosis-related genes were extracted. KEGG function analysis of these genes revealed that they were mainly enriched in the HIF-1 signaling pathway, NOD-like receptor signaling pathway, central carbon metabolism in cancer, and PPAR signaling pathway. Fifteen differentially expressed genes (ALOX15, ALOX15B, ANO6, BRD4, CISD1, DRD5, FLT3, G6PD, IFNG, NGB, NOS2, PROM2, SLC1A4, SLC38A1, and TP63) were selected as independent prognostic factors for BC patients. Moreover, T cell functions, including the CCR score, immune checkpoint, cytolytic activity, HLA, inflammation promotion, para-inflammation, T cell co-stimulation, T cell co-inhibition, and type II INF responses were significantly different between the low-risk and high-risk groups of the TCGA cohort. Immune checkpoints between the two groups revealed that the expressions of PDCD-1 (PD-1), CTLA4, LAG3, TNFSF4/14, TNFRSF4/8/9/14/18/25, and IDO1/2 among others were significantly different. A total of 1185 ferroptosis-related lncRNAs and 219 ferroptosis-related miRNAs were also included in this study. From the online database, we identified novel ferroptosis-related biomarkers for breast cancer prognosis. The findings of this study provide new insights into the development of new reliable and accurate cancer treatment options.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jin-Rui Chang ◽  
Yue-Long Hou ◽  
Wei-Wei Lu ◽  
Jin-Sheng Zhang ◽  
Yan-Rong Yu ◽  
...  

Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease(CKD). We previously reported that paracrine/autocrine factor intermedin (IMD) could protect against VC. In the present study we assessed the hypothesis that IMD inhibits VC by upregulating klotho protein. VC in CKD rat was induced by 5/6 nephrectomy plus vitamin D 3 administration and vascular smooth muscle cells (VSMCs) calcification was induced by calcifying media containing β -glycerophosphate and CaCl 2 . IMD (100 ng kg -1 h -1 ) was systemically administered by a mini-osmotic pump. CKD rat aortas showed lower IMD content and increased expression of its receptors (calcitonin receptor-like receptor,CRLR/receptor activity-modifying protein 3, RAMP3), along with increased aortic alkaline phosphatase (ALP) activity and calcium deposition. In vivo administration of IMD significantly reduced aortic ALP activity and calcium deposition in CKD rats when compared with vehicle treatment, which was further confirmed in cultured VSMCs. Concurrently, the loss of smooth muscle lineage markers and klotho protein in aortas was rescued by administering IMD to CKD rats with VC. However, the inhibitory effects of IMD on VC were abolished upon pre-treatment with small interfering RNA to reduce klotho. Moreover, the increased effects of IMD on klotho were abolished upon pretreatment with small interfering RNA to reduce its receptors or with PKA inhibitor H89. These results demonstrated that IMD attenuates VC by upregulating klotho via CRLR/RAMP3-cAMP/PKA signaling pathway in rat with CKD. IMD is an important paracrine/autocrine protective factor for VC.


2020 ◽  
Author(s):  
Xue Fan ◽  
Meng Li ◽  
Min Xiao ◽  
Cong Liu ◽  
Mingguo Xu

Abstract Background: Kawasaki disease (KD) leads to coronary artery damage and the etiology of KD is unknown. The present study was designed to explore the differentially expressed genes (DEGs) in KD serum-induced human coronary artery endothelial cells (HCAECs) by RNA-sequence (RNA-seq). Methods: HCAECs were stimulated with serum (15% (v/v)), which were collected from 20 healthy children and 20 KD patients, for 24 hours. DEGs were then detected and analyzed by RNA-seq and bioinformatics analysis. Results: The expression of SMAD1, SMAD6, CD34, CXCL1, PITX2, and APLN was validated by qPCR. 102 genes, 59 up-regulated and 43 down-regulated genes, were significantly differentially expressed in KD groups. GO enrichment analysis showed that DEGs were enriched in cellular response to cytokines, cytokine-mediated signaling pathway, and regulation of immune cells migration and chemotaxis. KEGG signaling pathway analysis showed that DEGs were mainly involved in cytokine−cytokine receptor interaction, chemokine signaling pathway, and TGF−β signaling pathway. Besides, the mRNA expression levels of SMAD1, SMAD6, CD34, CXCL1, and APLN in the KD group were significantly up-regulated compared with the normal group, whilePITX2 was significantly down-regulated. Conclusion: 102 DEGs in KD serum-induced HCAECs were identified, and six new targets were proposed as potential indicators of KD.


Sign in / Sign up

Export Citation Format

Share Document