scholarly journals Curculigoside promotes osteogenic differentiation of ADSCs to prevent ovariectomized-induced osteoporosis

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei-Li You ◽  
Zheng-Long Xu

Abstract Background Curculigoside is a natural phenolic glycoside compound produced by Curculigo orchioides Gaertn. This study aimed to explore the effects of curculigoside in promoting the osteogenic differentiation of adipose-derived stem cells (ADSCs) as well as the underlying mechanism. Methods ADSCs were treated with curculigoside at different concentrations (0 μmol/L, 1 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, and 20 μmol/L), and cell viability was assessed by CCK-8 assay. Then, the alkaline phosphatase (ALP) activity was determined, and alizarin red S (ARS) staining was performed to measure the extracellular mineralization of curculigoside. Information about protein-chemical interactions is provided by the search tool for interactions of chemicals (STITCH) database. Then, LY294002 was administered to explore the mechanism by which curculigoside promotes the osteogenic differentiation of ADSCs. Western blot assays were performed to assess changes in the expression of osteogenic-related markers and the phosphorylation of PI3K and AKT. Finally, we established an ovariectomized (OVX)-induced osteoporosis mouse model and administered curculigoside to explore the effects of curculigoside in preventing bone loss in vivo. Results The CCK-8 assay indicated that curculigoside did not induce cytotoxicity at a concentration of 5 μmol/L after 48 h. The ALP and ARS results revealed that the induced group had higher ALP activity and calcium deposition than the control group. Moreover, the curculigoside group exhibited increased biomineralization, ALP activity, and ARS staining compared to the induced and control groups, and these effects were partially inhibited by LY294002. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the target genes of curculigoside were mainly involved in the PI3K-Akt signaling pathway. PCR and western blot analysis showed that the expression of RUNX2, ALP, and Osterix was upregulated in curculigoside-treated ADSCs, but this effect was partially reversed by the PI3K inhibitor LY294002. Moreover, the curculigoside-treated group exhibited significantly increased phosphorylation of AKT to P-AKT compared with the osteogenic induction group. After treatment with curculigoside, the mice had a higher bone volume than the OVX mice, suggesting partial protection from cancellous bone loss. In addition, when LY294002 was added, the protective effects of curculigoside could be neutralized. Conclusions Curculigoside could induce the osteogenic differentiation of ADSCs and prevent bone loss in an OVX model through the PI3K/Akt signaling pathway.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Bing Jing ◽  
Hongjuan Ji ◽  
Rui Jiang ◽  
Jinlong Wang

Abstract Background Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. Methods MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 μg/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. Results Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. Conclusion The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Feng Gao ◽  
Sheng-Li Xia ◽  
Xiu-Hui Wang ◽  
Xiao-Xiao Zhou ◽  
Jun Wang

Abstract Background Osteoporosis is a common disease closely associated with aging. In this study, we aimed to investigate the role of Cornuside I in promoting osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the potential mechanism. Methods BMSCs were isolated and treated with different concentrations of Cornuside I (0, 10, 30, 60 μM). Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. RNA sequencing was performed on the isolated BMSCs with control and Cornuside I treatment. Differentially expressed genes were obtained by the R software. Alkaline phosphatase (ALP) staining and Alizarin Red Staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR and western blot were used to detect the expression of osteoblast markers. Results Cornuside I treatment significantly improved BMSC proliferation. The optimal dose of Cornuside I was 30 μM (P < 0.05). Cornuside I dose dependently increased the ALP activity and calcium deposition than control group (P < 0.05). A total of 704 differentially expressed genes were identified between Cornuside I and normal BMSCs. Cornuside I significantly increased the PI3K and Akt expression. Moreover, the promotion effects of Cornuside I on osteogenic differentiation of BMSCs were partially blocked by PI3K/Akt inhibitor, LY294002. Conclusion Cornuside I plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of PI3K/Akt signaling pathway.


2018 ◽  
Vol 47 (6) ◽  
pp. 2307-2318 ◽  
Author(s):  
Geng-Yang Shen ◽  
Hui Ren ◽  
Jin-Jing Huang ◽  
Zhi-Da Zhang ◽  
Wen-Hua Zhao ◽  
...  

Background/Aims: Plastrum testudinis extracts (PTE) show osteoprotective effects on glucocorticoid-induced osteoporosis in vivo and in vitro. However, the underlying molecular mechanism of PTE in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is unclear. Methods: BMSC proliferation was investigated using the Cell Counting Kit-8 assay. BMSC differentiation and osteogenic mineralization were assayed using alkaline phosphatase and Alizarin red staining, respectively. The mRNA expression levels of Let-7f-5p, Tnfr2, Traf2, Pi3k, Akt, β-catenin, Gsk3β, Runx2, and Ocn were measured using real time quantitative polymerase chain reaction. Protein levels of TNFR2, TRAF2, p-PI3K, p-AKT, p-β-CATENIN, and p-GSK3β were analyzed by western blotting. The functional relationship of Let-7f-5p and Tnfr2 was determined by luciferase reporter assays. Results: The optimum concentration for PTE was 30 μg/ml. PTE significantly promoted BMSC osteogenic differentiation and mineralization after 7 and 14 days in culture, respectively. The combination of PTE and osteogenic induction exhibited significant synergy. PTE upregulated Let-7f-5p, β-catenin, Runx2, and Ocn mRNA expression, and downregulated Tnfr2, Traf2, Pi3k, Akt, and Gsk3β mRNA expression. PTE inhibited TNFR2, TRAF2, and p-β-CATENIN protein expression, and promoted p-PI3K, p-AKT, and p-GSK3β protein expression. In addition, Tnfr2 was a functional target of Let-7f-5p in 293T cells. Conclusions: Our results suggested that PTE may promote BMSC proliferation and osteogenic differentiation via a mechanism associated with the regulation of Let-7f-5p and the TNFR2/PI3K/AKT signaling pathway.


2016 ◽  
Vol 68 (3) ◽  
pp. 551-559
Author(s):  
Yi Qin ◽  
Guoping Cao ◽  
Jichao Ye ◽  
Peng Wang ◽  
Liangbin Gao ◽  
...  

The nuclear receptor corepressor (N-CoR) is involved in the regulation of diverse transcription factors. We previously found that N-CoR could regulate adipogenic differentiation of rat mesenchymal stem cells (MSCs),but whether it modulated osteogenic differentiation of this type of cells was uncertain. Therefore, in the present study, we investigated the effect and mechanism of N-CoRon osteogenic differentiation of rat MSCs. The results showed that MSCs cultured in osteogenic medium successfully differentiated into osteogenic cells. Overexpression of N-CoR decreased cell proliferation, alkaline phosphatase (ALP)activity, calcium accumulation, mRNA expression of genes including bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), Osterix and Runx2, and protein expression of phosphor-Akt(pAkt). Conversely, knocking down cellular N-CoR by small interfering RNA (siRNA) promoted pAkt activity and cell differentiation. Overexpression or knockdown of N-CoRhad no significant influences on the protein expression of pyruvate dehydrogenase kinase isozyme 1 (PDK1), phosphatidylinositol 3-kinase (PI3K) and total Akt, indicating that N-CoR regulated the changes in the PI3K/Akt signaling pathway by targeting pAkt. To further prove the function of the PI3K/Akt signaling in N-CoR-regulated osteogenic differentiation, we used the PI3K inhibitor (LY294002) to block the activation of the PI3K/Akt pathway and found that overexpression of N-CoR showed no effects on ALP activity, calcium level and mRNA expression of BSP, osteocalcin OCN, OPN, Osterix and Runx2 in rat MSCs following the inhibition of the PI3K/Akt pathway. These findings suggest that N-CoR regulates osteogenic differentiation of rat MSCs through suppression of the PI3K/Akt signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao-hua Li ◽  
Fu-ling Chen ◽  
Hong-lin Shen

Abstract Background Bone disease causes short-term or long-term physical pain and disability. It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs). Methods ADSCs were isolated and treated with different dose of Salidroside. Cell count kit-8 (CCK-8) assay was performed to assess the cell viability of ADSCs. Then, ALP and ARS staining were conducted to assess the early and late osteogenic capacity of ADSCs, respectively. Then, differentially expressed genes were obtained by R software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes were further analyzed. The expression of OCN, COL1A1, RUNX2, WNT3A, and β-catenin were measured by real-time PCR and Western blot analysis. Last, β-catenin was silenced by small interfering RNA. Results Salidroside significantly increased the ADSCs viability at a dose-response manner. Moreover, Salidroside enhanced osteogenic capacity of ADSCs, which are identified by enhanced ALP activity and calcium deposition. A total of 543 differentially expressed genes were identified between normal and Salidroside-treated ADSCs. Among these differentially expressed genes, 345 genes were upregulated and 198 genes were downregulated. Differentially expressed genes enriched in the Wnt/β-catenin signaling pathway. Western blot assay indicated that Salidroside enhanced the WNT3A and β-catenin expression. Silencing β-catenin partially reversed the promotion effects of Salidroside. PCR and Western blot results further confirmed these results. Conclusion Salidroside promoted osteogenic differentiation of ADSCs through Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xu Gao ◽  
Jingya Dai ◽  
Guifang Li ◽  
Xinya Dai

Abstract Objective In this work, we investigated the effects of gambogic acid (GA) on lipopolysaccharide (LPS)-induced apoptosis and inflammation in a cell model of neonatal pneumonia. Method Human WI-38 cells were maintained in vitro and incubated with various concentrations of GA to examine WI-38 survival. GA-preincubated WI-38 cells were then treated with LPS to investigate the protective effects of GA on LPS-induced death, apoptosis and inflammation. Western blot assay was utilized to analyze the effect of GA on tropomyosin receptor kinase A (TrkA) signaling pathway in LPS-treated WI-38 cells. In addition, human AKT serine/threonine kinase 1 (Akt) gene was knocked down in WI-38 cells to further investigate the associated genetic mechanisms of GA in protecting LPS-induced inflammation and apoptosis. Results Pre-incubating WI-38 cells with low and medium concentrations GA protected LPS-induced cell death, apoptosis and inflammatory protein productions of IL-6 and MCP-1. Using western blot assay, it was demonstrated that GA promoted TrkA phosphorylation and Akt activation in LPS-treated WI-38 cells. Knocking down Akt gene in WI-38 cells showed that GA-associated protections against LPS-induced apoptosis and inflammation were significantly reduced. Conclusions GA protected LPS-induced apoptosis and inflammation, possibly through the activations of TrkA and Akt signaling pathway. This work may broaden our understanding on the molecular mechanisms of human neonatal pneumonia.


2019 ◽  
Vol 48 (4) ◽  
pp. 030006051985164
Author(s):  
Jun Li ◽  
Youjian Peng

Objective To investigate the effects of the flavonoid, puerarin, on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs). Methods Human PDLSCs were isolated from patients undergoing orthodontic treatment, and the cell surface markers CD146, CD34, CD45, and STRO-1 were identified by immunofluorescence. Cell proliferation was detected by MTT assay; alkaline phosphatase (ALP) activity was measured, and calcium deposition was detected by alizarin red staining. PCR was then used to detect the distributions of COL-I, OPN, Runx2, and OCN, genes related to osteogenic differentiation. Results Staining was positive for cytokines CD146, CD34, CD45, and STRO-1 in the experimental group; staining was also positive for silk protein, but negative for keratin. After 7 days of culture, exposure to puerarin significantly promoted the level of intracellular ALP; increased puerarin concentration led to increased intracellular ALP. Red mineralized nodules appeared upon exposure to puerarin and the number of nodules was concentration-dependent. PCR analysis revealed that COL-I, OPN, Runx2, and OCN expression levels increased as puerarin concentration increased. Conclusions Exposure to puerarin can promote proliferation and ALP activity in human PDLSCs, thus promoting both molecular and osteogenic differentiation; these findings may provide a theoretical basis for the clinical treatment of periodontal disease with puerarin.


2020 ◽  
Vol 10 (1) ◽  
pp. 133-138
Author(s):  
Peng Zhao ◽  
Junxia Qin ◽  
Lili Liang ◽  
Xinzhong Zhang

Hypertrophic scar (HS) is a process of tissue repair and healing, and excessive fibrosis of local tissue leads to scar formation. During HS formation, fibroblasts (Fb) proliferate, synthesize and secrete and promote HS development. miR-184 regulates skin formation and tissue development. However, miR-184’s role in HS remains unclear. miR-184 expression in HS patients and normal healthy (Control) tissues was measured by real-time PCR. pAKT expression was analyzed by Western blot. Fb cells from human HS were cultured and divided into 2 groups, siRNA NC group and miR-184 siRNA group followed by analysis of miR-184 expression by real time PCR, cell proliferation by MTT assay, secretion of inflammatory factors IL-1β and IL-6 by ELISA, as well as expression of pAKT and AKT by western blot. Compared with control group, miR-184 and pAKT expression was significantly increased in the HS group. Transfection of miR-184 siRNA into Fb significantly downregulated miR-184 expression, inhibited cell proliferation, promoted Caspase 3 activity, decreased IL-1β and IL-6 secretion, and reduced pAKT level (P < 0.05). miR-184 expression is increased in hypertrophic scar tissue. Down-regulation of miR-184 expression in proliferative scar tissue fibroblasts can down-regulate PI3K/AKT signaling pathway, inhibit inflammation, promote apoptosis, inhibit fibroblast proliferation, and regulate hypertrophic scar formation.


2019 ◽  
Author(s):  
jiazhou chen ◽  
xiandong peng ◽  
min yu

AbstractObjectiveThis study aimed to explore more biomarkers associated with ovarian cancer.MethodsCell lines SKOV-3 (ovarian serous carcinoma cells) and MCV152 (benign ovarian epithelial tumor cell) were used in this study and performed transcriptome sequencing. The differentially expressed genes (DEGs) between ovarian cancer cells (SKOV-3) and controls (MCV152) were identified, followed by function enrichment analysis. The expression levels of genes involved in the key pathway were validated through PCR and western blot analyses.ResultsTotal 2,020 upregulated and 1,673 downregulated DEGs were obtained between SKOV3 and MCV152 cells. The upregulated and downregulated DEGs were significantly associated with cell adhesion. In addition, the upregulated DEGs were significantly involved in pathways of ECM-receptor interaction, and the downregulated DEGs were involved in PI3K-Akt signaling pathway. PCR and western blot analyses showed that genes (proteins) expression related to PI3K-Akt signaling pathway were in consistent with bioinformatics analysis.ConclusionCell adhesion and extracellular matrix (ECM)-receptor interaction may play an important role in the invasion of ovarian cancer. PI3K-Akt signaling pathway may be involved in the progression of ovarian cancer by up-regulating ANGPT2, FGF18, ITGB4 and ITGB8, and downregulating AKT3 and PIK3AP1.HighlightsCell adhesion and ECM-receptor interaction may play important roles in ovarian cancer invasion.PI3K-Akt signaling pathway may involve in ovarian cancer progression.ANGPT2, FGF18, ITGB4, ITGB8, AKT3 and PIK3AP1 may serve as biomarkers in ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document