scholarly journals Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer’s disease brain

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hans-Ulrich Klein ◽  
Caroline Trumpff ◽  
Hyun-Sik Yang ◽  
Annie J. Lee ◽  
Martin Picard ◽  
...  

Abstract Background Mitochondrial dysfunction is a feature of neurodegenerative diseases, including Alzheimer’s disease (AD). Changes in the mitochondrial DNA copy number (mtDNAcn) and increased mitochondrial DNA mutation burden have both been associated with neurodegenerative diseases and cognitive decline. This study aims to systematically identify which common brain pathologies in the aged human brain are associated with mitochondrial recalibrations and to disentangle the relationship between these pathologies, mtDNAcn, mtDNA heteroplasmy, aging, neuronal loss, and cognitive function. Methods Whole-genome sequencing data from n = 1361 human brain samples from 5 different regions were used to quantify mtDNAcn as well as heteroplasmic mtDNA point mutations and small indels. Brain samples were assessed for 10 common pathologies. Annual cognitive test results were used to assess cognitive function proximal to death. For a subset of samples, neuronal proportions were estimated from RNA-seq profiles, and mass spectrometry was used to quantify the mitochondrial protein content of the tissue. Results mtDNAcn was 7–14% lower in AD relative to control participants. When accounting for all 10 common neuropathologies, only tau was significantly associated with lower mtDNAcn in the dorsolateral prefrontal cortex. In the posterior cingulate cortex, TDP-43 pathology demonstrated a distinct association with mtDNAcn. No changes were observed in the cerebellum, which is affected late by pathologies. Neither age nor gender was associated with mtDNAcn in the studied brain regions when adjusting for pathologies. Mitochondrial content and mtDNAcn independently explained variance in cognitive function unaccounted by pathologies, implicating complex mitochondrial recalibrations in cognitive decline. In contrast, mtDNA heteroplasmy levels increased by 1.5% per year of life in the cortical regions, but displayed no association with any of the pathologies or cognitive function. Conclusions We studied mtDNA quantity and quality in relation to mixed pathologies of aging and showed that tau and not amyloid-β is primarily associated with reduced mtDNAcn. In the posterior cingulate cortex, the association of TDP-43 with low mtDNAcn points to a vulnerability of this region in limbic-predominant age-related TDP-43 encephalopathy. While we found low mtDNAcn in brain regions affected by pathologies, the absence of associations with mtDNA heteroplasmy burden indicates that mtDNA point mutations and small indels are unlikely to be involved in the pathogenesis of late-onset neurodegenerative diseases.

2021 ◽  
Author(s):  
Hans-Ulrich Klein ◽  
Caroline Trumpff ◽  
Hyun-Sik Yang ◽  
Annie J Lee ◽  
Martin Picard ◽  
...  

Mitochondrial dysfunction is a feature of neurodegenerative diseases, including Alzheimer's disease (AD). Using whole-genome sequencing, we assessed mitochondrial DNA (mtDNA) heteroplasmy levels and mtDNA copy number (mtDNAcn) in 1,361 human brain samples of five brain regions from three studies. Multivariable analysis of ten common brain pathologies identified tau pathology in the dorsolateral prefrontal cortex and TDP-43 pathology in the posterior cingulate cortex as primary drivers of reduced mtDNAcn in the aged human brain. Amyloid-β pathology, age, and sex were not associated with mtDNAcn. Further, there is evidence for a direct effect of mitochondrial health on cognition. In contrast, while mtDNA heteroplasmy levels increase by about 1.5% per year of life in the cortical regions, we found little evidence for an association with brain pathologies or cognitive functioning. Thus, our data indicates that mtDNA heteroplasmy burden is unlikely to be involved in the pathogenesis of late-onset neurodegenerative diseases.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1 ◽  
Author(s):  
P. Fusar-Poli

Aims:Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown.Method:Fifteen healthy English-native right-handed men were studied on three separate occasions using an event-related fMRI paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10mg of D-9-THC, 600mg of CBD, or a placebo, in a double-blind, randomised, placebo controlled design. Electrodermal activity (Skin Conductance Response, SCR) and objective and subjective ratings of anxiety were recorded durign the scanning.Results:D-9THC increased anxiety, as well as levels of intoxication, sedation and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of D-9THC but decreased following administration of CBD. CBD attenuated the BOLD signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and posterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. D-9-THC mainly modulated activation in frontal and parietal areas.Conclusions:D-9-THC and CBD had clearly distinct effects on the neural, eclectrodermal and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to reduce autonomic arousal and subjective anxiety, whereas the anxiogenic effects of D-9-THC may be related to effects in other brain regions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zoe R. Guttman ◽  
Dara G. Ghahremani ◽  
Jean-Baptiste Pochon ◽  
Andy C. Dean ◽  
Edythe D. London

Decision-making strategies shift during normal aging and can profoundly affect wellbeing. Although overweighing losses compared to gains, termed “loss aversion,” plays an important role in choice selection, the age trajectory of this effect and how it may be influenced by associated changes in brain structure remain unclear. We therefore investigated the relationship between age and loss aversion, and tested for its mediation by cortical thinning in brain regions that are susceptible to age-related declines and are implicated in loss aversion — the insular, orbitofrontal, and anterior and posterior cingulate cortices. Healthy participants (n = 106, 17–54 years) performed the Loss Aversion Task. A subgroup (n = 78) provided structural magnetic resonance imaging scans. Loss aversion followed a curvilinear trajectory, declining in young adulthood and increasing in middle-age, and thinning of the posterior cingulate cortex mediated this trajectory. The findings suggest that beyond a threshold in middle adulthood, atrophy of the posterior cingulate cortex influences loss aversion.


2019 ◽  
Vol 16 (11) ◽  
pp. 1055-1062
Author(s):  
Xi Sun ◽  
Binbin Nie ◽  
Shujun Zhao ◽  
Qian Chen ◽  
Panlong Li ◽  
...  

Background: Visuospatial dysfunction is one predominant symptom in many atypical Alzheimer’s disease (AD) patients, however, until now its neural correlates still remain unclear. For the accumulation of intracellular hyperphosphorylated tau proteins is a major pathogenic factor in neurodegeneration of AD, the distributional pattern of tau could highlight the affected brain regions associated with specific cognitive deficits. Objective: We investigated the brain regions particularly affected by tau accumulation in patients with visuospatial dysfunction to explore its neural correlates. Methods: Using 18F-AV-1451 tau positron emission tomography (PET), voxel-wise two-sample t-tests were performed between AD patients with obvious visuospatial dysfunction (VS-AD) and cognitively normal subjects, AD patients with little-to-no visuospatial dysfunction (non VS-AD) and cognitively normal subjects, respectively. Results: Results showed increased tau accumulations mainly located in occipitoparietal cortex, posterior cingulate cortex, precuneus, inferior and medial temporal cortex in VS-AD patients, while increased tau accumulations mainly occurred in the inferior and medial temporal cortex in non VS-AD patients. Conclusion: These findings suggested that occipitoparietal cortex, posterior cingulate cortex and precuneus, which were particularly affected by increased tau accumulation in VS-AD patients, may associate with visuospatial dysfunction of AD.


2015 ◽  
Vol 112 (29) ◽  
pp. E3940-E3949 ◽  
Author(s):  
Farshad A. Mansouri ◽  
Mark J. Buckley ◽  
Majid Mahboubi ◽  
Keiji Tanaka

Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys’ ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals’ abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals.


2018 ◽  
Author(s):  
Vaidehi S. Natu ◽  
Jui-Jui Lin ◽  
Alexis Burks ◽  
Akshay Arora ◽  
Michael D. Rugg ◽  
...  

Neuroimaging experiments implicate the posterior cingulate cortex (PCC) in episodic memory processing, making it a potential target for responsive neuromodulation strategies outside of the hippocampal network. However, causal evidence for the role PCC plays in memory encoding is lacking. In patients undergoing seizure mapping, we investigated functional properties of the PCC using deep brain stimulation (DBS) and stereotactic electroencephalography (stereo EEG). These techniques allow precise targeting of deep cortical structures including the PCC, and simultaneous acquisition of oscillatory recordings from neighboring regions such as the hippocampus. We used a free recall experiment in which PCC was stimulated during item encoding period of half of the study lists, while no stimulation was applied during encoding period of the remaining lists. We evaluated if stimulation affected memory and/or modulated hippocampal activity. Results revealed four main findings. (i) Stimulation during encoding impaired memory for early items on the study lists. (ii) Stimulation increased hippocampal gamma band power. (iii) Stimulation-induced gamma power predicted memory impairment. (iv) Functional connectivity between the hippocampus and PCC predicted the degree of stimulation effect on memory. Our findings offer the first causal evidence implicating the PCC in episodic memory encoding. Importantly, results highlight that stimulation targeted outside of the temporal lobe can modulate hippocampal activity with implications on behavior. Furthermore, a-priori measures of connectivity between brain regions within a functional network can be informative in predicting behavioral effects of stimulation. Our findings have significant implications for developing therapies to treat diseases of memory loss and cognitive impairment using DBS.


Neurology ◽  
2018 ◽  
Vol 90 (11) ◽  
pp. e932-e939 ◽  
Author(s):  
Joseph Therriault ◽  
Kok Pin Ng ◽  
Tharick A. Pascoal ◽  
Sulantha Mathotaarachchi ◽  
Min Su Kang ◽  
...  

ObjectiveTo identify the pathophysiologic mechanisms and clinical significance of anosognosia for cognitive decline in mild cognitive impairment.MethodsWe stratified 468 patients with amnestic mild cognitive impairment into intact and impaired awareness groups, determined by the discrepancy between the patient and the informant score on the Everyday Cognition questionnaire. Voxel-based linear regression models evaluated the associations between self-awareness status and baseline β-amyloid load, measured by [18F]florbetapir, and the relationships between awareness status and regional brain glucose metabolism measured by [18F]fluorodeoxyglucose at baseline and at 24-month follow-up. Multivariate logistic regression tested the association of awareness status with conversion from amnestic mild cognitive impairment to dementia.ResultsWe found that participants with impaired awareness had lower [18F]fluorodeoxyglucose uptake and increased [18F]florbetapir uptake in the posterior cingulate cortex at baseline. In addition, impaired awareness in mild cognitive impairment predicted [18F]fluorodeoxyglucose hypometabolism in the posterior cingulate cortex, left basal forebrain, bilateral medial temporal lobes, and right lateral temporal lobe over 24 months. Furthermore, participants with impaired awareness had a nearly 3-fold increase in likelihood of conversion to dementia within a 2-year time frame.ConclusionsOur results suggest that anosognosia is linked to Alzheimer disease pathophysiology in vulnerable structures, and predicts subsequent hypometabolism in the default mode network, accompanied by an increased risk of progression to dementia. This highlights the importance of assessing awareness of cognitive decline in the clinical evaluation and management of individuals with amnestic mild cognitive impairment.


2011 ◽  
Vol 18 (1) ◽  
pp. 39-48 ◽  
Author(s):  
S. Duke Han ◽  
Konstantinos Arfanakis ◽  
Debra A. Fleischman ◽  
Sue E. Leurgans ◽  
Elizabeth R. Tuminello ◽  
...  

AbstractParticipants with mild cognitive impairment (MCI) have a higher likelihood of developing Alzheimer's disease (AD) compared to those without MCI, and functional magnetic resonance neuroimaging (fMRI) used with MCI participants may prove to be an important tool in identifying early biomarkers for AD. We tested the hypothesis that functional connectivity differences exist between older adults with and without MCI using resting-state fMRI. Data were collected on over 200 participants of the Rush Memory and Aging Project, a community-based, clinical-pathological cohort study of aging. From the cohort, 40 participants were identified as having MCI, and were compared to 40 demographically matched participants without cognitive impairment. MCI participants showed lesser functional connectivity between the posterior cingulate cortex and right and left orbital frontal, right middle frontal, left putamen, right caudate, left superior temporal, and right posterior cingulate regions; and greater connectivity with right inferior frontal, left fusiform, left rectal, and left precentral regions. Furthermore, in an alternate sample of 113, connectivity values in regions of difference correlated with episodic memory and processing speed. Results suggest functional connectivity values in regions of difference are associated with cognitive function and may reflect the presence of AD pathology and increased risk of developing clinical AD. (JINS, 2012, 18, 39–48)


Sign in / Sign up

Export Citation Format

Share Document