scholarly journals Nanoscale organization of Nicastrin, the substrate receptor of the γ-secretase complex, as independent molecular domains

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shekhar Kedia ◽  
Kousik Mandal ◽  
Pallavi Rao Netrakanti ◽  
Mini Jose ◽  
Sangram S. Sisodia ◽  
...  

AbstractAlterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer’s Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.

Author(s):  
Ana Kasirer-Friede ◽  
Emilia Peuhu ◽  
Johanna Ivaska ◽  
Sanford J. Shattil

Platelets form hemostatic plugs to prevent blood loss and they modulate immunity and inflammation in several ways. A key event during hemostasis is activation of integrin αIIbβ3 through direct interactions of the β3 cytoplasmic tail with talin and kindlin-3. Recently, we showed that human platelets express the adapter molecule, SHARPIN, that can associate directly with the αIIb cytoplasmic tail and can separately promote NF-κB pathway activation as a member of the Met-1 linear ubiquitination activation complex (LUBAC). Here we investigated the role of SHARPIN in platelets after crossing Sharpin flox/flox (fl/fl) mice with PF4-Cre or GPIbα-Cre mice to selectively delete SHARPIN in platelets. SHARPIN-null platelets adhered to immobilized fibrinogen through αIIbβ3, and they spread more extensively than littermate control platelets in a manner dependent on feedback stimulation by platelet adenosine diphosphate (ADP) (P < 0.01). SHARPIN-null platelets showed increased colocalization of αIIbβ3 with talin as assessed by super-resolution microscopy and increased binding of soluble fibrinogen in response to sub-maximal concentrations of ADP (P < 0.05). However, mice with SHARPIN-null platelets showed compromised thrombus growth on collagen and slightly prolonged tail bleeding times. Platelets lacking SHARPIN also showed reduced NF-κB activation and linear ubiquitination of protein substrates upon challenge with classical platelet agonists. Furthermore, the loss of platelet SHARPIN resulted in significant reduction in inflammation in murine models of colitis and peritonitis (P < 0.01). Thus, SHARPIN plays differential and context-dependent roles in platelets to regulate important inflammatory and integrin adhesive functions of these anucleate cells.


2018 ◽  
Vol 218 (2) ◽  
pp. 632-643 ◽  
Author(s):  
Nitin Mohan ◽  
Elena M. Sorokina ◽  
Ione Vilanova Verdeny ◽  
Angel Sandoval Alvarez ◽  
Melike Lakadamyali

Microtubule post-translational modifications impart functional diversity to microtubules by affecting their dynamics, organization, and interaction with proteins. Using super-resolution microscopy, we show that only a small subpopulation of microtubules are detyrosinated in epithelial cells, while acetylated and tyrosinated microtubules comprise the majority of all microtubules. Surprisingly, lysosomes are enriched by approximately threefold on detyrosinated microtubules. Further, their motility on detyrosinated microtubules is impaired, showing shorter runs and more frequent and longer pauses. Lysosome enrichment is mediated through a kinesin-1–dependent mechanism, since knocking down this motor abolishes enrichment. Finally, correlative live-cell and super-resolution microscopy showed that lysosomes interact with autophagosomes on detyrosinated microtubules. Removal of detyrosinated microtubules or knockdown of kinesin-1 leads to a decrease in the percentage of autolysosomes, a fusion intermediate of autophagosomes and lysosomes. Taken together, our data reveal a new role of detyrosinated microtubules as hubs that spatially concentrate lysosomes on a small subset of microtubules and facilitate their interaction and fusion with autophagosomes to initiate autophagy.


2021 ◽  
Vol 7 (4) ◽  
pp. 64
Author(s):  
David Lalaouna ◽  
Karine Prévost ◽  
Seongjin Park ◽  
Thierry Chénard ◽  
Marie-Pier Bouchard ◽  
...  

Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Weng Man Chong ◽  
Won-Jing Wang ◽  
Chien-Hui Lo ◽  
Tzu-Yuan Chiu ◽  
Ting-Jui Chang ◽  
...  

Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.


2020 ◽  
Vol 21 (7) ◽  
pp. 2651
Author(s):  
Michaela Frolikova ◽  
Tereza Otcenaskova ◽  
Eliska Valasková ◽  
Pavla Postlerova ◽  
Romana Stopkova ◽  
...  

Fertilization is a multiple step process leading to the fusion of female and male gametes and the formation of a zygote. Besides direct gamete membrane interaction via binding receptors localized on both oocyte and sperm surface, fertilization also involves gamete communication via chemical molecules triggering various signaling pathways. This work focuses on a mouse taste receptor, mTAS1R3, encoded by the Tas1r3 gene, as a potential receptor mediating chemical communication between gametes using the C57BL/6J lab mouse strain. In order to specify the role of mTAS1R3, we aimed to characterize its precise localization in testis and sperm using super resolution microscopy. The testis cryo-section, acrosome-intact sperm released from cauda epididymis and sperm which underwent the acrosome reaction (AR) were evaluated. The mTAS1R3 receptor was detected in late spermatids where the acrosome was being formed and in the acrosomal cap of acrosome intact sperm. AR is triggered in mice during sperm maturation in the female reproductive tract and by passing through the egg surroundings such as cumulus oophorus cells. This AR onset is independent of the extracellular matrix of the oocyte called zona pellucida. After AR, the relocation of mTAS1R3 to the equatorial segment was observed and the receptor remained exposed to the outer surroundings of the female reproductive tract, where its physiological ligand, the amino acid L-glutamate, naturally occurs. Therefore, we targeted the possible interaction in vitro between the mTAS1R3 and L-glutamate as a part of chemical communication between sperm and egg and used an anti-mTAS1R3-specific antibody to block it. We detected that the acrosome reacted spermatozoa showed a chemotactic response in the presence of L-glutamate during and after the AR, and it is likely that mTAS1R3 acted as its mediator.


2018 ◽  
Author(s):  
David Van Ly ◽  
Ronnie Ren Jie Low ◽  
Sonja Frölich ◽  
Tara K. Bartolec ◽  
Georgia R. Kafer ◽  
...  

SUMMARYWe used super-resolution microscopy to investigate the role of macromolecular telomere structure in chromosome end protection. In murine and human cells with reduced TRF2, we find that ATM-activation at chromosome ends occurs with a structural change from t-loops to linearized chromosome ends through t-loop unfolding. Comparably, we find Aurora B kinase regulates telomere linearity concurrent with ATM activation at telomeres during mitotic arrest. Using a separation of function allele, we find that the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that telomere linearity and ATM activation occur separately from telomere fusion via non-homologous end-joining (NHEJ). Further, we show that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1-arrest when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that regulate ATM activation at chromosome ends independent of mechanisms to suppress chromosome end fusion.


2018 ◽  
Author(s):  
Natalia Y. Kochanova ◽  
Tamas Schauer ◽  
Grusha Primal Mathias ◽  
Andrea Lukacs ◽  
Andreas Schmidt ◽  
...  

ABSTRACTIn higher eukaryotes centromeres often coalesce into a large intranuclear domain called the chromocenter. Chromocenters are important for the organization of pericentric heterochromatin and a disturbance of their formation results in an upregulation of repetitive elements and causes defects in chromosome segregation. Mutations in the gene encoding for the centromere associated Drosophila speciation factor HMR show very similar phenotypes suggesting a role of HMR in chromocenter architecture and function. We performed confocal and super resolution microscopy as well as proximity based biotinylation experiments of HMR and its associated protein HP1a to generate a molecular map of HMR and HP1a bound chromatin. Our work reveals an intricate internal structure of the centromeric chromatin region, which suggests a role of HMR in separating heterochromatin from centromeric chromatin.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 42-51
Author(s):  
S. S. Ryabichko ◽  
◽  
A. N. Ibragimov ◽  
L. A. Lebedeva ◽  
E. N. Kozlov ◽  
...  

2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document