scholarly journals Runt-related transcription factor 1 promotes apoptosis and inhibits neuroblastoma progression in vitro and in vivo

Author(s):  
Mei Hong ◽  
Jing He ◽  
Duo Li ◽  
Yuanyuan Chu ◽  
Jiarui Pu ◽  
...  
Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 1331-1340 ◽  
Author(s):  
De-Shou Wang ◽  
Lin-Yan Zhou ◽  
Tohru Kobayashi ◽  
Masaru Matsuda ◽  
Yasushi Shibata ◽  
...  

Doublesex- and Mab-3-related transcription factor-1 (Dmrt1) is an important transcription factor implicated in early testicular differentiation in vertebrates, but its target genes are largely unknown. In the Nile tilapia, estrogen is the natural inducer of ovarian differentiation. Our recent studies have shown that Forkhead-l2 up-regulated transcription of the Cyp19a1a gene (aromatase) in the gonads in a female-specific manner. However, the upstream factor(s) down-regulating Cyp19a1a expression during testicular differentiation remains unclear. In the present study, we used in vitro (promoter analysis) and in vivo (transgenesis and in situ hybridization) approaches to examine whether Dmrt1 inhibits Cyp19a1a’s transcriptional activity. The in vitro analysis using luciferase assays revealed that Dmrt1 repressed basal as well as Ad4BP/SF-1-activated Cyp19a1a transcription in HEK 293 cells. Luciferase assays with various deletions of Dmrt1 also showed that the Doublesex and Mab-3 domain is essential for the repression. In vitro-translated Dmrt1 and the nuclear extract from tilapia testis could directly bind to the palindrome sequence ACATATGT in the Cyp19a1a promoter, as determined by EMSAs. Transgenic overexpression of Dmrt1 in XX fish resulted in decreased aromatase gene expression, reduced serum estradiol-17β levels, retardation of the ovarian cavity’s development, varying degrees of follicular degeneration, and even a partial to complete sex reversal. Our results indicate that aromatase is one of the targets of Dmrt1. Dmrt1 suppresses the female pathway by repressing aromatase gene transcription and estrogen production in the gonads of tilapia and possibly other vertebrates.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1277 ◽  
Author(s):  
Kaur ◽  
Rawal ◽  
Siddiqui ◽  
Rohilla ◽  
Sharma ◽  
...  

Given the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of RUNX1 in NASH. The gene expression of RUNX1 was correlated with histopathological attributes of patients. The protein expression of RUNX1 in liver was studied by immunohistochemistry. To explore the underlying mechanisms, in vitro studies using RUNX1 siRNA and overexpression plasmids were performed in endothelial cells (ECs). RUNX1 expression was significantly correlated with inflammation, fibrosis and NASH activity score in NASH patients. Its expression was conspicuous in liver non-parenchymal cells. In vitro, factors from steatotic hepatocytes and/or VEGF or TGF- significantly induced the expression of RUNX1 in ECs. RUNX1 regulated the expression of angiogenic and adhesion molecules in ECs, including CCL2, PECAM1 and VCAM1, which was shown by silencing or over-expression of RUNX1. Furthermore, RUNX1 increased the angiogenic activity of ECs. This study reports that steatosis-induced RUNX1 augmented the expression of adhesion and angiogenic molecules and properties in ECs and may be involved in enhancing inflammation and disease severity in NASH.


2004 ◽  
pp. 235-242 ◽  
Author(s):  
M Yan ◽  
M Hernandez ◽  
R Xu ◽  
C Chen

OBJECTIVE: Growth hormone (GH)-releasing hormone (GHRH) and GH-releasing peptides (GHRPs) stimulate the release of GH through their specific receptors on somatotropes. Combined GHRH and GHRP administration causes a synergistic GH release in vivo by an unknown mechanism. The current study focuses on the direct action of GHRH and GHRP on several molecular targets in somatotropes. DESIGN AND METHODS: To clarify the mechanism of action, ovine somatotropes were used to measure the expression of mRNAs encoding for GH, pituitary transcription factor-1 (Pit-1), GH-secretagogue receptor (GHS-R), GHRH-R, somatostatin receptor subtypes (sst-1 and sst-2) and GH release after GHRH and GHRP-2 treatment for 0.5, 1, 1.5 and 2 h. RESULTS: GHRH (10 nM), GHRP-2 (100 nM) and combined GHRH-GHRP-2 increased the levels of GH mRNA and GH release from 0.5 to 2 h in a time-dependent manner. The levels of Pit-1, GHRH-R and GHS-R mRNA were increased after 0.5 h treatment of cells with GHRH and GHRP-2. The levels of sst-1 but not sst-2 mRNA were significantly increased after 0.5 and 1 h of GHRH treatment. In contrast, both sst-1 and sst-2 mRNA expression was inhibited after 0.5-2 h of GHRP treatment. CONCLUSIONS: These data demonstrate a direct in vitro modification of ovine somatotropes by GHRH and GHRP-2 resulting in altered GHRH-R, GHS-R, Pit-1, sst-1, sst-2 and GH gene expression; this may underlie the regulatory action of GHRH and GHRP-2 on GH secretion.


2002 ◽  
Vol 22 (7) ◽  
pp. 2147-2158 ◽  
Author(s):  
Ludger Hauck ◽  
Rudolf G. Kaba ◽  
Martin Lipp ◽  
Rainer Dietz ◽  
Rüdiger von Harsdorf

ABSTRACT The E2F family of transcription factors comprises six related members which are involved in the control of the coordinated progression through the G1/S-phase transition of cell cycle or in cell fate decision. Their activity is regulated by pocket proteins, including pRb, p107, and p130. Here we show that E2F1 directly interacts with the ETS-related transcription factor GABPγ1 in vitro and in vivo. The binding domain interacting with GABPγ1 was mapped to the C-terminal amino acids 310 to 437 of E2F1, which include its transactivation and pRb binding domain. Among the E2F family of transcription factors, the interaction with GABPγ1 is restricted to E2F1. DNA-binding E2F1 complexes containing GABPγ1 are characterized by enhanced E2F1-dependent transcriptional activity. Moreover, GABPγ1 suppresses E2F1-dependent apoptosis by mechanisms other than the inhibition of the transactivation capacity of E2F1. In summary, our results provide evidence for a novel pRb-independent mechanism regulating E2F1-dependent transcription and apoptosis.


2020 ◽  
Vol 318 (3) ◽  
pp. G504-G517 ◽  
Author(s):  
Zengdun Shi ◽  
Mudan Ren ◽  
Don C. Rockey

Activation of hepatic stellate cells (HSCs), characterized by development of a robust actin cytoskeleton and expression of abundant extracellular matrix (ECM) proteins, such as type 1 collagen (COL.1), is a central cellular and molecular event in liver fibrosis. It has been demonstrated that HSCs express both myocardin and myocardin-related transcription factor-A (MRTF-A). However, the biological effects of myocardin and MRTF-A on HSC activation and liver fibrosis, as well as the molecular mechanism under the process, remain unclear. Here, we report that myocardin and MRTF-A’s expression and nuclear accumulation are prominently increased during the HSC activation process, accompanied by robust activation of actin cytoskeleton dynamics. Targeting myocardin and MRTF-A binding and function with a novel small molecule, CCG-203971, led to dose-dependent inhibition of HSC actin cytoskeleton dynamics and abrogated multiple functional features of HSC activation (i.e., HSC contraction, migration and proliferation) and decreased COL.1 expression in vitro and liver fibrosis in vivo. Mechanistically, blocking the myocardin and MRTF-A nuclear translocation pathway with CCG-203971 directly inhibited myocardin/MRTF-A-mediated serum response factor (SRF), and Smad2/3 activation in the COL.1α2 promoter and indirectly abrogated actin cytoskeleton-dependent regulation of Smad2/3 and Erk1/2 phosphorylation and their nuclear accumulation. Finally, there was no effect of CCG-203971 on markers of inflammation, suggesting a direct effect of the compound on HSCs and liver fibrosis. These data reveal that myocardin and MRTF-A are two important cotranscriptional factors in HSCs and represent entirely novel therapeutic pathways that might be targeted to treat liver fibrosis. NEW & NOTEWORTHY Myocardin and myocardin-related transcription factor-A (MRTF-A) are upregulated in activated hepatic stellate cells (HSCs) in vitro and in vivo, closely associated with robustly increased actin cytoskeleton remodeling. Targeting myocardin and MRTF-A by CCG-203971 leads to actin cytoskeleton-dependent inhibition of HSC activation, reduced cell contractility, impeded cell migration and proliferation, and decreased COL.1 expression in vitro and in vivo. Dual expression of myocardin and MRTF-A in HSCs may represent novel therapeutic targets in liver fibrosis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miran Rada ◽  
Audrey Kapelanski-Lamoureux ◽  
Stephanie Petrillo ◽  
Sébastien Tabariès ◽  
Peter Siegel ◽  
...  

AbstractColorectal cancer liver metastasis (CRCLM) has two major histopathological growth patterns: angiogenic desmoplastic and non-angiogenic replacement. The replacement lesions obtain their blood supply through vessel co-option, wherein the cancer cells hijack pre-existing blood vessels of the surrounding liver tissue. Consequentially, anti-angiogenic therapies are less efficacious in CRCLM patients with replacement lesions. However, the mechanisms which drive vessel co-option in the replacement lesions are unknown. Here, we show that Runt Related Transcription Factor-1 (RUNX1) overexpression in the cancer cells of the replacement lesions drives cancer cell motility via ARP2/3 to achieve vessel co-option. Furthermore, overexpression of RUNX1 in the cancer cells is mediated by Transforming Growth Factor Beta-1 (TGFβ1) and thrombospondin 1 (TSP1). Importantly, RUNX1 knockdown impaired the metastatic capability of colorectal cancer cells in vivo and induced the development of angiogenic lesions in liver. Our results confirm that RUNX1 may be a potential target to overcome vessel co-option in CRCLM.


2019 ◽  
Author(s):  
Leon Louis Seifert ◽  
Clara Si ◽  
Sarah Ballentine ◽  
Debjani Saha ◽  
Maren de Vries ◽  
...  

ABSTRACTThe transcription of interferon-stimulated genes (ISGs) is classically triggered via activation of the JAK-STAT pathway, and together, ISGs raise a multifaceted antiviral barrier. An increasing body of evidence reports the existence of additional, non-canonical pathways and transcription factors that coordinate ISG expression. Detailed knowledge of how heterogenous mechanisms regulate ISG expression is crucial for the rational design of drugs targeting the type I interferon response. Here, we characterize the first ETS transcription factor family member as a regulator of non-canonical ISG expression: E74-like ETS transcription factor 1 (ELF1). Using high-content microscopy to quantify viral infection over time, we found that ELF1, itself an ISG, inhibits eight diverse RNA and DNA viruses uniquely at multi-cycle replication. ELF1 did not regulate expression of type I or II interferons, and ELF1’s antiviral effect was not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNAseq revealed that the ELF1 transcriptional program is distinct from, and delayed with respect to, the immediate interferon response. Finally, knockdown experiments demonstrated that ELF1 is a critical component of the antiviral interferon response in vitro and in vivo. Our findings reveal a previously overlooked mechanism of non-canonical ISG regulation that both amplifies and prolongs the initial interferon response by expressing broadly antiviral restriction factors.AUTHOR SUMMARYOver 60 years after their discovery, we still struggle to understand exactly how interferons inhibit viruses. Our gap in knowledge stems, on one hand, from the sheer number of interferon-stimulated effector genes, of which only few have been characterized in mechanistic detail. On the other hand, our knowledge of interferon-regulated gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of interferon-stimulated gene expression, all of which may contribute to the antiviral mechanism of interferons. Deciphering these regulatory mechanisms is indispensable for understanding this critical first line of host defense, and for harnessing the power of interferons in novel antiviral therapies. Here, we report a novel mechanism of interferon-induced gene regulation by an interferon-stimulated gene, which, paradoxically, inhibits viruses in the absence of additional interferon signaling: E74-like ETS transcription factor 1 (ELF1) raises an unusually delayed antiviral program that potently restricts propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminished interferon-mediated host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role in the type I interferon response. The transcriptional program raised by ELF1 is vast and comprises over 400 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a critical secondary wave of antiviral protection that adds both “quality” and “time” to the type I interferon response.


1991 ◽  
Vol 11 (10) ◽  
pp. 4985-4997 ◽  
Author(s):  
S L Weinrich ◽  
A Meister ◽  
W J Rutter

Exocrine pancreas (XP) enhancers, which contain a conserved core sequence, are active only in XP cells. A core enhancer-binding activity also appears to be restricted to XP nuclei. Here we describe the properties of a factor, purified approximately 100,000-fold from pancreas nuclei, which displays core enhancer-binding activity. It is not identical to previously characterized factors and is termed exocrine pancreas transcription factor 1 (XPF-1). In the highly purified preparation, only a single major protein of 60 kDa was detected by silver staining on sodium dodecyl sulfate-gels and by UV cross-linking. XPF-1 binds to the core enhancer of all tested XP genes and not to a mutant sequence which is inactive in vivo. High-affinity binding sites are bipartite. The results of competition binding and UV-cross-linking assays suggest that XPF-1 interacts with both motifs. XPF-1 selectively stimulates transcription of core enhancer templates in an in vitro transcription system. We hypothesize that XPF-1 plays a role in activation of the transcription of XP-specific genes.


2020 ◽  
Author(s):  
Kai Liu ◽  
Huiying Hu ◽  
Huanyu Jiang ◽  
Haidong Zhang ◽  
Shanchun Gong ◽  
...  

Abstract Tumor progression and metastasis are still major burdens for head and neck squamous cell carcinoma (HNSCC). Runt-related transcription factor 1 (RUNX1) are involved in aggressive phenotypes in several cancers, while the molecular role of RUNX1 underlying cancer progression and metastasis of HNSCC remains largely unknown. In our study, RUNX1 expression was increased with disease progression in patients with HNSCC. The silencing of RUNX1 significantly decelerated the malignant progression of HNSCC cells, reduced Osteopontin (OPN) expression in vitro, and weakened the tumorigenicity of HNSCC cells in vivo. Moreover, we demonstrated that RUNX1 activated the MAPK signaling by directly binding to the promoter of OPN in tumor progression and metastasis of HNSCC. Our results may provide new insight into the mechanisms underlying the role of RUNX1 in tumor progression and metastasis and reveal the potential therapeutic target in HNSCC.


Sign in / Sign up

Export Citation Format

Share Document