scholarly journals A nicotine-induced positive feedback loop between HIF1A and YAP1 contributes to epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma

Author(s):  
Qiwen Ben ◽  
Wei An ◽  
Yunwei Sun ◽  
Aihua Qian ◽  
Jun Liu ◽  
...  
Oncogene ◽  
2021 ◽  
Author(s):  
Hirokazu Kimura ◽  
Ryota Sada ◽  
Naoki Takada ◽  
Akikazu Harada ◽  
Yuichiro Doki ◽  
...  

AbstractDickkopf1 (DKK1) is overexpressed in various cancers and promotes cancer cell proliferation by binding to cytoskeleton-associated protein 4 (CKAP4). However, the mechanisms underlying DKK1 expression are poorly understood. RNA sequence analysis revealed that expression of the transcription factor forkhead box M1 (FOXM1) and its target genes concordantly fluctuated with expression of DKK1 in pancreatic ductal adenocarcinoma (PDAC) cells. DKK1 knockdown decreased FOXM1 expression and vice versa in PDAC and esophageal squamous cell carcinoma (ESCC) cells. Inhibition of either the DKK1-CKAP4-AKT pathway or the ERK pathway suppressed FOXM1 expression, and simultaneous inhibition of both pathways showed synergistic effects. A FOXM1 binding site was identified in the 5ʹ-untranslated region of the DKK1 gene, and its depletion decreased DKK1 expression and cancer cell proliferation. Clinicopathological and database analysis revealed that PDAC and ESCC patients who simultaneously express DKK1 and FOXM1 have a poorer prognosis. Multivariate analysis demonstrated that expression of both DKK1 and FOXM1 is the independent prognostic factor in ESCC patients. Although it has been reported that FOXM1 enhances Wnt signaling, FOXM1 induced DKK1 expression independently of Wnt signaling in PDAC and ESCC cells. These results suggest that DKK1 and FOXM1 create a positive feedback loop to promote cancer cell proliferation.


2010 ◽  
Vol 211 (3) ◽  
pp. S12
Author(s):  
Wolf Arif Mardin ◽  
Soeren Torge Mees ◽  
Christina Haane ◽  
Sabrina Irmscher ◽  
Joerg Haier ◽  
...  

2020 ◽  
Author(s):  
In-Gyu Kim ◽  
Jei-Ha Lee ◽  
Seo-Yeon Kim ◽  
Chang-Kyu Heo ◽  
Rae-Kwon Kim ◽  
...  

Abstract Cancer stem cells (CSCs) are regarded as essential targets to overcome tumor progression and therapeutic resistance; however, practical targeting approaches are limited. Here, we identify testis-specific Y-like protein 5 (TSPYL5) as a CSC-associated factor that promotes stemness and epithelial-to-mesenchymal transition in therapy-resistant non-small cell lung cancer (NSCLC) cells. Aberrantly activated PI3K/AKT pathway in therapy-resistant NSCLC cells promotes TSPYL5 phosphorylation at threonine-120 (pT120), which inhibits ubiquitination and stabilizes TSPYL5. TSPYL5 pT120 also supports SUMOylation, which leads to its nuclear translocation and functions as a transcriptional repressor of PTEN. Nuclear TSPYL5 also activates the transcription of CSC-associated genes, ALDH1 and CD44. Collectively, TSPYL5 pT120 maintains persistent CSC-like characteristics via transcriptional activation of CSC-associated genes and via a positive-feedback loop between the AKT/TSPYL5/PTEN and PTEN/PI3K/AKT signaling pathways. However, inhibition of TSPYL5 pT120 can block aberrant AKT/TSPYL5/PTEN cyclic signaling and cancer stemness. Our study suggests TSPYL5 as a novel target for cancer therapy.


Cancers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 113 ◽  
Author(s):  
Rita Lawlor ◽  
Nicola Veronese ◽  
Alessia Nottegar ◽  
Giuseppe Malleo ◽  
Lee Smith ◽  
...  

This study aims at clarifying the prognostic role of high-grade tumor budding (TB) in pancreatic ductal adenocarcinoma (PDAC) with the first systematic review and meta-analysis on this topic. Furthermore, we analyzed with a systematic review the relationship between TB and a recently suggested TB-associated mechanism: the epithelial to mesenchymal transition (EMT). Analyzing a total of 613 patients, 251 of them (40.9%) with high grade-TB, we found an increased risk of all-cause mortality (RR, 1.46; 95% CI, 1.13–1.88, p = 0.004; HR, 2.65; 95% CI, 1.79–3.91; p < 0.0001) and of recurrence (RR, 1.61; 95% CI, 1.05–2.47, p = 0.03) for PDAC patients with high-grade TB. Moreover, we found that EMT is a central process in determining the presence of TB in PDAC. Thanks to this meta-analysis, we demonstrate the potential clinical significance of high-grade TB for prognostic stratification of PDAC. TB also shows a clear association with the process of EMT. Based on the results of the present study, TB should be conveyed in pathology reports and taken into account by future oncologic staging systems.


2015 ◽  
Vol 106 (6) ◽  
pp. 718-725 ◽  
Author(s):  
Nizam Uddin ◽  
Rae‐Kwon Kim ◽  
Ki‐Chun Yoo ◽  
Young‐Heon Kim ◽  
Yan‐Hong Cui ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Thomas Große-Steffen ◽  
Thomas Giese ◽  
Nathalia Giese ◽  
Thomas Longerich ◽  
Peter Schirmacher ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is frequently associated with fibrosis and a prominent inflammatory infiltrate in the desmoplastic stroma. Moreover, in PDAC, an epithelial-to-mesenchymal transition (EMT) is observed. To explore a possible connection between the infiltrating cells, particularly the polymorphonuclear neutrophils (PMN) and the tumor cell transition, biopsies of patients with PDAC (n=115) were analysed with regard to PMN infiltration and nuclear expression ofβ-catenin and of ZEB1, well-established indicators of EMT. In biopsies with a dense PMN infiltrate, a nuclear accumulation ofβ-catenin and of ZEB1 was observed. To address the question whether PMN could induce EMT, they were isolated from healthy donors and were cocultivated with pancreatic tumor cells grown as monolayers. Rapid dyshesion of the tumor cells was seen, most likely due to an elastase-mediated degradation of E-cadherin. In parallel, the transcription factor TWIST was upregulated,β-catenin translocated into the nucleus, ZEB1 appeared in the nucleus, and keratins were downregulated. EMT was also induced when the tumor cells were grown under conditions preventing attachment to the culture plates. Here, also in the absence of elastase, E-cadherin was downmodulated. PMN as well as prevention of adhesion induced EMT also in liver cancer cell line. In conclusion, PMN via elastase induce EMTin vitro, most likely due to the loss of cell-to-cell contact. Because in pancreatic cancers the transition to a mesenchymal phenotype coincides with the PMN infiltrate, a contribution of the inflammatory response to the induction of EMT and—by implication—to tumor progression is possible.


Sign in / Sign up

Export Citation Format

Share Document