scholarly journals Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness

Author(s):  
Kai Jiang ◽  
Haiyan Chen ◽  
Yimin Fang ◽  
Liubo Chen ◽  
Chenhan Zhong ◽  
...  

Abstract Background Angiopoietin-like protein 1 (ANGPTL1) has been proved to suppress tumor metastasis in several cancers. However, its extracellular effects on the pre-metastatic niches (PMNs) are still unclear. ANGPTL1 has been identified in exosomes, while its function remains unknown. This study was designed to explore the role of exosomal ANGPTL1 on liver metastasis in colorectal cancer (CRC). Methods Exosomes were isolated by ultracentrifugation. The ANGPTL1 level was detected in exosomes derived from human CRC tissues. The effects of exosomal ANGPTL1 on CRC liver metastasis were explored by the intrasplenic injection mouse model. The liver PMN was examined by vascular permeability assays. Exosomal ANGPTL1 localization was validated by exosome labeling. The regulatory mechanisms of exosomal ANGPTL1 on Kupffer cells were determined by RNA sequencing. qRT-PCR, Western Blot, and ELISA analysis were conducted to examine gene expressions at mRNA and protein levels. Results ANGPTL1 protein level was significantly downregulated in the exosomes derived from CRC tumors compared with paired normal tissues. Besides, exosomal ANGPTL1 attenuated liver metastasis and impeded vascular leakiness in the liver PMN. Moreover, exosomal ANGPTL1 was mainly taken up by KCs and regulated the KCs secretion pattern, enormously decreasing the MMP9 expression, which finally prevented the liver vascular leakiness. In mechanism, exosomal ANGPTL1 downregulated MMP9 level in KCs by inhibiting the JAK2-STAT3 signaling pathway. Conclusions Taken together, exosomal ANGPTL1 attenuated CRC liver metastasis and impeded vascular leakiness in the liver PMN by reprogramming the Kupffer cell and decreasing the MMP9 expression. This study suggests a suppression role of exosomal ANGPTL1 on CRC liver metastasis and expands the approach of ANGPTL1 functioning.

2020 ◽  
Author(s):  
Kai Jiang ◽  
Haiyan Chen ◽  
Yimin Fang ◽  
Liubo Chen ◽  
Chenhan Zhong ◽  
...  

Abstract Background: Angiopoietin-like protein 1 (ANGPTL1) has been proved to suppress tumor metastasis in several cancers. However, its extracellular effects on the pre-metastatic niches (PMNs) are still unclear. ANGPTL1 has been identified in exosomes, while its function remains unknown. This study was designed to explore the role of exosomal ANGPTL1 on liver metastasis in colorectal cancer (CRC).Methods: Exosomes were isolated by ultracentrifugation. The ANGPTL1 level was detected in exosomes derived from human CRC tissues. The effects of exosomal ANGPTL1 on CRC liver metastasis were explored by the intrasplenic injection mouse model. The liver PMN was examined by vascular permeability assays. Exosomal ANGPTL1 localization was validated by exosome labeling. The regulatory mechanisms of exosomal ANGPTL1 on Kupffer cells were determined by RNA sequencing. qRT-PCR, Western Blot, and ELISA analysis were conducted to examine gene expressions at mRNA and protein levels.Results: ANGPTL1 protein level was significantly downregulated in the exosomes derived from CRC tumors compared with paired normal tissues. Besides, exosomal ANGPTL1 attenuated liver metastasis and impeded vascular leakiness in the liver PMN. Moreover, exosomal ANGPTL1 was mainly taken up by KCs and regulated the KCs secretion pattern, enormously decreasing the MMP9 expression, which finally prevented the liver vascular leakiness. In mechanism, exosomal ANGPTL1 downregulated MMP9 level in KCs by inhibiting the JAK2-STAT3 signaling pathway.Conclusions: Taken together, exosomal ANGPTL1 attenuated CRC liver metastasis and impeded vascular leakiness in the liver PMN by reprogramming the Kupffer cell and decreasing the MMP9 expression. This study suggests a suppression role of exosomal ANGPTL1 on CRC liver metastasis and expands the approach of ANGPTL1 functioning.


2020 ◽  
Author(s):  
Kai Jiang ◽  
Haiyan Chen ◽  
Yimin Fang ◽  
Liubo Chen ◽  
Chenhan Zhong ◽  
...  

Abstract Background: Angiopoietin-like protein 1 (ANGPTL1) has been proved to suppress tumor metastasis in several cancers. However, its extracellular effects on the pre-metastatic niches (PMNs) are still unclear. ANGPTL1 has been identified in exosomes, while its function remains unknown. This study was designed to explore the role of exosomal ANGPTL1 on liver metastasis in colorectal cancer (CRC).Methods: Exosomes were isolated by ultracentrifugation. The ANGPTL1 level was detected in exosomes derived from human CRC tissues. The effects of exosomal ANGPTL1 on CRC liver metastasis were explored by the intrasplenic injection mouse model. The liver PMN was examined by vascular permeability assays. Exosomal ANGPTL1 localization was validated by exosome labeling. The regulatory mechanisms of exosomal ANGPTL1 on Kupffer cells were determined by RNA sequencing. qRT-PCR, Western Blot, and ELISA analysis were conducted to examine gene expressions at mRNA and protein levels.Results: ANGPTL1 protein level was significantly downregulated in the exosomes derived from CRC tumors compared with paired normal tissues. Besides, exosomal ANGPTL1 attenuated liver metastasis and impeded vascular leakiness in the liver PMN. Moreover, exosomal ANGPTL1 were mainly taken up by KCs and regulated the KCs secretion pattern, especially decreasing the MMP9 expression, which finally prevented the liver vascular leakiness. In mechanism, exosomal ANGPTL1 downregulated MMP9 level in KCs by inhibiting the JAK2-STAT3 signaling pathway.Conclusions: Taken together, exosomal ANGPTL1 attenuated CRC liver metastasis and impeded vascular leakiness in the liver PMN by reprogramming the Kupffer cell and decreasing the MMP9 expression. This study suggests a suppression role of exosomal ANGPTL1 on CRC liver metastasis and expands the approach of ANGPTL1 functioning.


2018 ◽  
Vol 9 (16) ◽  
pp. 2981-2986 ◽  
Author(s):  
Yimin Shen ◽  
Caihua Wang ◽  
Yuezhong Ren ◽  
Jun Ye

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yuan He ◽  
Li-Yue Sun ◽  
Jing Wang ◽  
Rui Gong ◽  
Qiong Shao ◽  
...  

Objective. To investigate methylation of the adenomatosis polyposis coli homologue (APC2) promoter and its correlation with prognostic implications in Chinese colorectal cancer (CRC). Methods. The mRNA expression of APC2 in colorectal tissues was evaluated using the database of The Cancer Genome Atlas (TCGA). Methylation analysis of APC2 in tumor (n=66) and corresponding adjacent formalin-fixed and paraffin-embedded (FFPE) tissues (n=44) was performed by Sequenom EpiTYPER® and verified by cloning-based bisulfite sequencing analysis. Demethylation and retrieval of APC2 expression in cell lines HT29, HCT116, and SW480 were treated with 5-aza-2′-deoxycytidine (5-AZC). Results. Analysis of TCGA showed that APC2 mRNA was significantly downregulated in primary tumors when compared to normal tissues (p<0.05). APC2 methylation was upregulated (43.93% vs 7.31%, p<0.05) in tumors compared to adjacent FFPE tissues. In vitro experiments demonstrated that 5-AZC downregulated the methylation of APC2 and retrieved its expression of mRNA and protein levels (p<0.05). Multivariate Cox regression indicated that APC2_CPG_14 was an independent risk factor for overall survival (HR = 6.38, 95% CI: 1.59–25.64, p<0.05). Conclusion. This study indicates that APC2 is hypermethylated and may be a tumorigenesis biomarker for Chinese CRC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhengxiang Zhang ◽  
Yunxiang Tao ◽  
Qingling Hua ◽  
Juan Cai ◽  
Xiaobing Ye ◽  
...  

Small nucleolar RNAs (snoRNAs) play a crucial role during colorectal cancer (CRC) development. The study of SNORA71A is few, and its role in CRC is unknown. This study focused on screening abnormal snoRNAs in CRC and exploring the role of key snoRNA in CRC. The expression pattern of snoRNAs in 3 CRC and 3 normal colon tissues was detected via small RNA sequencing. The six candidate snoRNAs were identified by quantitative PCR (qPCR). Subsequently, the expression level of SNORA71A was further verified through the Cancer Genome Atlas (TCGA) data analysis and qPCR. The CCK8 and transwell assays were used to detect the functional role of SNORA71A in CRC cells. The integrated analysis of snoRNA expression profile indicated that a total 107 snoRNAs were significantly differentially expressed (DE) in CRC tissues compared with normal tissues, including 45 upregulated and 62 downregulated snoRNAs. Bioinformatics analysis revealed that the DE snoRNAs were mainly implicated in “detection of chemical stimulus involved in sensory perception of smell” and “sensory perception of smell” in the biological process. The DE snoRNAs were preferentially enriched in “olfactory transduction” and “glycosphingolipid biosynthesis-ganglio series pathway.” The expression of SNORA71A was upregulated in CRC tissues and cells. SNORA71A expression showed statistically significant correlations with TNM stage ( P = 0.0196 ) and lymph node metastasis ( P = 0.0189 ) and can serve as biomarkers for CRC. Importantly, SNORA71A significantly facilitated the CRC cell proliferation, migration, and invasion. Our findings indicate that SNORA71A screened by sequencing acted as an oncogene and promoted proliferation, migration, and invasion ability of CRC cells.


2018 ◽  
Vol 19 (12) ◽  
pp. 3711 ◽  
Author(s):  
Ovidiu Balacescu ◽  
Daniel Sur ◽  
Calin Cainap ◽  
Simona Visan ◽  
Daniel Cruceriu ◽  
...  

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high incidence and mortality rate. An essential challenge in colorectal cancer management is to identify new prognostic factors that could better estimate the evolution and treatment responses of this disease. Considering their role in cancer development, progression and metastasis, miRNAs have become an important class of molecules suitable for cancer biomarkers discovery. We performed a systematic search of studies investigating the role of miRNAs in colorectal progression and liver metastasis published until October 2018. In this review, we present up-to-date information regarding the specific microRNAs involved in CRC development, considering their roles in alteration of Wnt/βcatenin, EGFR, TGFβ and TP53 signaling pathways. We also emphasize the role of miRNAs in controlling the epithelial–mesenchymal transition of CRC cells, a process responsible for liver metastasis in a circulating tumor cell-dependent manner. Furthermore, we discuss the role of miRNAs transported by CRC-derived exosomes in mediating liver metastases, by preparing the secondary pre-metastatic niche and in inducing liver carcinogenesis in a Dicer-dependent manner.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xue-Yang Li ◽  
Yi Hu ◽  
Nian-Shuang Li ◽  
Jian-Hua Wan ◽  
Yin Zhu ◽  
...  

Background. The receptor of activated protein kinase C 1 (RACK1) promotes the progression and invasion of several cancers. However, the role of RACK1 in the pathogenesis of colorectal cancer (CRC) has not been clearly defined. Herein, we aimed to investigate the biological role of RACK1 in CRC. Materials and Methods. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset were searched, and the expression of RACK1 in CRC tissues and adjacent normal tissues was evaluated. Immunohistochemical staining was performed to detect the expression of RACK1 in human CRC, adenoma, and normal tissues. Western blotting was used to detect the expression of RACK1 in human CRC cell lines. Functional assays, such as BrdU, colony formation, and wound healing and transwell invasion assays, were used to explore the biological role of RACK1 in CRC. Results. RACK1 was upregulated in CRC tissues compared with its expression in adjacent normal tissues in TCGA and the GEO dataset (P<0.05). Moreover, RACK1 was significantly overexpressed in CRC and adenoma tissues compared with its expression in normal tissues (P<0.05). Loss-of-function experiments showed that RACK1 promoted cell proliferation, migration, and invasion in vitro. Conclusions. Our data indicated that RACK1, as an oncogene, markedly promoted the progression of CRC, which suggested that RACK1 is a potential therapeutic target for CRC management.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojie Wang ◽  
Qian Yu ◽  
Waleed M. Ghareeb ◽  
Yiyi Zhang ◽  
Xingrong Lu ◽  
...  

Abstract Background SPINK4 is known as a gastrointestinal peptide in the gastrointestinal tract and is abundantly expressed in human goblet cells. The clinical significance of SPINK4 in colorectal cancer (CRC) is largely unknown. Methods We retrieved the expression data of 1168 CRC patients from 3 Gene Expression Omnibus (GEO) datasets (GSE24551, GSE39582, GSE32323) and The Cancer Genome Atlas (TCGA) to compare the expression level of SPINK4 between CRC tissues and normal colorectal tissues and to evaluate its value in predicting the survival of CRC patients. At the protein level, these results were further confirmed by data mining in the Human Protein Atlas and by immunohistochemical staining of samples from 81 CRC cases in our own center. Results SPINK4 expression was downregulated in CRC compared with that in normal tissues, and decreased SPINK4 expression at both the mRNA and protein levels was associated with poor prognosis in CRC patients from all 3 GEO datasets, the TCGA database and our cohort. Additionally, lower SPINK4 expression was significantly related to higher TNM stage. Moreover, in multivariate regression, SPINK4 was confirmed as an independent indicator of poor survival in CRC patients in all databases and in our own cohort. Conclusions We concluded that reduced expression of SPINK4 relates to poor survival in CRC, functioning as a novel indicator.


Sign in / Sign up

Export Citation Format

Share Document