scholarly journals Dihydroartemisinin Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma Partially by Targeting AKT1 and p70S6K

2020 ◽  
Vol 11 ◽  
Author(s):  
Lili Zhu ◽  
Xinhuan Chen ◽  
Yanyan Zhu ◽  
Jiace Qin ◽  
Tingting Niu ◽  
...  

Dihydroartemisinin (DHA), a sesquiterpene lactone with endoperoxide bridge, is one of the derivatives of artemisinin. In addition to having good antimalarial properties, DHA exhibits anticancer effects including against malignant solid tumors. However, the mechanism by which DHA inhibits the progression of esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is unclear. In this study, DHA was found to inhibit the proliferation of ESCC, and the underlying molecular mechanisms were explored. DHA inhibited ESCC cells proliferation and anchorage-independent growth. Flow cytometry analysis revealed that DHA significantly blocked cell cycle in the G1 phase. The results of human phospho-kinase array revealed that DHA downregulated the levels of p70S6KT389 and p70S6KT421/S424. Furthermore, the levels of mTORS2448, p70S6KT389, p70S6KT421/S424 and RPS6S235/S236 were decreased after DHA treatment in KYSE30 and KYSE150 cells. We then explored the proteins targeted by DHA to inhibit the mTOR-p70S6K-RPS6 pathway. Results of the in vitro kinase assay revealed that DHA significantly inhibited phosphorylation of mTORS2448 by binding to AKT1 and p70S6K kinases. In vivo, DHA inhibited the tumor growth of ESCC patient-derived xenografts and weakened p-mTOR, p-p70S6K, and p-RPS6 expression in tumor tissues. Altogether, our results indicate that DHA has antiproliferative effects in ESCC cells and can downregulate mTOR cascade pathway partially by binding to AKT1 and p70S6K. Thus, DHA has considerable potential for the prevention or treatment of ESCC.

Author(s):  
Yaxing Wei ◽  
Wenjie Wu ◽  
Yanan Jiang ◽  
Hao Zhou ◽  
Yin Yu ◽  
...  

Abstract Background Due to the high recurrence and low 5-year survival rates of esophageal squamous cell carcinoma (ESCC) after treatment, the discovery of novel drugs for recurrence chemoprevention is of particular importance. Methods We screened the FDA-approved drug library and found that Nuplazid, an atypical antipsychotic that acts as an effective 5-HT 2 A receptor inverse agonist, could potentially exert anticancer effects in vitro and in vivo on ESCC. Results Pull-down results indicated that Nuplazid binds with p21-activated kinase 4 (PAK4), and a kinase assay showed that Nuplazid strongly suppressed PAK4 kinase activity. Moreover, Nuplazid exhibited inhibitory effects on ESCC in vivo. Conclusions Our findings indicate that Nuplazid can suppress ESCC progression through targeting PAK4.


Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


2021 ◽  
Author(s):  
Xinning Liu ◽  
Yanan Jiang ◽  
Hao Zhou ◽  
Mingzhu Li ◽  
Zhuo Bao ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is a high recurrence rate of upper-digestive cancer with a low 5-year survival rate. Therefore, there is an urgent need for effective chemopreventive drugs that can extend the survival rate of patients. Through screening of FDA-approved drugs, dasabuvir was found to suppress ESCC proliferation. Methods: Cell number count assay was used to screen for drugs with inhibitory effect on ESCC cells and detect the inhibitory effect of dasabuvir on proliferation of ESCC cells KYSE150 and KYE450. Phosphoproteomics and proteomics were used to investigate the mechanism of dasabuvir inhibiting ESCC. In vitro kinase assay was used to verify the inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ROCK1 by dasabuvir. The PDX model was used to test the inhibitory effect of dasabuvir on ESCC in vivo.Results: In this study, we found that dasabuvir is a novel inhibitor of Rho-associated protein kinase 1 (ROCK1). Dasabuvir inhibited the growth of the KYSE150 and KYSE450 ESCC cell lines in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was validated in vivo using a patient-derived xenograft tumor model in mice. Dasabuvir inhibited the activation of ERK1/2 by ROCK1 and downregulated cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Conclusions: These results provide the first evidence that dasabuvir serves as a ROCK1 inhibitor, suppresses ESCC growth in vivo and in vitro, and arrests the cell cycle through the ROCK1/ERK signaling pathway.


Author(s):  
Jie Li ◽  
Xu Han ◽  
Yan Gu ◽  
Jixiang Wu ◽  
Jianxiang Song ◽  
...  

Esophageal squamous cell carcinoma (ESCC) has been one of the key causes of cancer deaths worldwide. It has been found that long non-coding RNA (lncRNA) is related to the generation and progression of various cancers (including ESCC). However, there are still many lncRNAs related to ESCC whose functions and molecular mechanisms have not been clearly elucidated. In this study, we first reported that lncRNA MTX2-6 was significantly downregulated in ESCC tissues and cell lines. The decreased expression of MTX2-6 is closely related to larger tumor and worse prognosis of ESCC patients. Through a series of functional experiments, we detected that overexpressed MTX2-6 inhibited cell proliferation and promoted cell apoptosis of ESCC in vitro and in vivo. Further studies showed that MTX2-6 exerts as a competing endogenous RNA (ceRNA) by binding miR-574-5p and elevates the expression of SMAD4 in ESCC. In summary, our results clarify the tumor suppressor roles of MTX2-6/miR-574-5p/SMAD4 axis in the progression of ESCC and provide emerging therapeutic targets for ESCC patients.


2021 ◽  
Author(s):  
Donghao Wang ◽  
Ning Yang ◽  
Xiaofan Zhang ◽  
Mingzhu Li ◽  
Xin Li ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) accounts for 90% of esophageal cancer and has a high mortality rate worldwide. The clinical treatment of ESCC is mainly surgical resection. The five-year survival rate of ESCC patients in developing countries is less than 20%. Therefore, identifying new and effective drugs that can prevent the occurrence and recurrence of ESCC is clinically significant. Here, daurisoline, a bis-benzylisoquinoline alkaloid, was found to have an anticancer effect on ESCC. Methods We investigated the effects of daurisoline on ESCC cell growth and proliferation using ESCC cell lines (KYSE150 and KYSE450 cells) and tumor growth in an ESCC patient-derived xenograft model. Phosphoproteomics was used to identify changes in protein phosphorylation after daurisoline treatment. Molecular docking simulation, pull down assay and amino acid mutation experiments were conducted to determine the target proteins and specific amino acid binding sites of daurisoline. In vitro kinase assay was used to determine the effect of daurisoline on protein phosphorylation. The correlation between MEK1/2 and ERK1/2 expression levels in ESCC was analyzed using TCGA database. Results In vitro experiments showed that daurisoline inhibited the proliferation and anchorage-independent growth of ESCC cells. In vivo experiments indicated that daurisoline significantly inhibited tumor growth. Phosphoproteomics analysis revealed that daurisoline reduced ERK1/2 phosphorylation. A pull down assay showed that daurisoline could bind to MEK1/2. In vitro kinase assay confirmed that daurisoline inhibited the biological functions of MEK1/2. We observed a significant correlation between MEK1 and ERK2 in ESCC from the TCGA database. Conclusion Daurisoline is a MEK1/2 inhibitor that suppressed ESCC growth in vitro and in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjuan Zha ◽  
Xiaomin Li ◽  
Xiaowei Tie ◽  
Yao Xing ◽  
Hao Li ◽  
...  

AbstractThe long noncoding RNASBF2-AS1 can promote the occurrence and development of many kinds of tumours, but its role in oesophageal squamous cell carcinoma (ESCC) is unknown. We found that SBF2-AS1 was up-regulated in ESCC, and its expression was positively correlated with tumor size (P = 0.0001), but was not related to gender, age, TNM stage, histological grade, and lymphnode metastasis (P > 0.05). It was further found that the higher the expression of SBF2-AS1, the lower the survival rate. COX multivariate analysis showed that the expression of SBF2-AS1 was an independent prognostic factor. Functional experiments show that inhibition of SBF2-AS1 can inhibit the proliferation of ESCC through in vivo and in vitro, and overexpression of SBF2-AS1 can promote the proliferation of ESCC and inhibit its apoptosis. In mechanism, SBF2-AS1/miR-338-3P, miR-362-3P/E2F1 axis are involved in the regulation of ESCC growth. In general, SBF2-AS1 may be used as ceRNA to combine with miR-338-3P and miR-362-3P to up-regulate the expression ofE2F1, and ultimately play a role in promoting cancer. It may be used as a therapeutic target and a biomarker for prognosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ze-nan Zheng ◽  
Guang-zhao Huang ◽  
Qing-qing Wu ◽  
Heng-yu Ye ◽  
Wei-sen Zeng ◽  
...  

AbstractOral squamous cell carcinoma (OSCC) is the most common oral cancer. The molecular mechanisms of this disease are not fully understood. Our previous studies confirmed that dysregulated function of long non-coding RNA (lncRNA) AC007271.3 was associated with a poor prognosis and overexpression of AC007271.3 promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. However, the underlying mechanisms of AC007271.3 dysregulation remained obscure. In this study, our investigation showed that AC007271.3 functioned as competing endogenous RNA by binding to miR-125b-2-3p and by destabilizing primary miR-125b-2, resulted in the upregulating expression of Slug, which is a direct target of miR-125b-2-3p. Slug also inhibited the expression of E-cadherin but N-cadherin, vimentin, and β-catenin had no obvious change. The expression of AC007271.3 was promoted by the canonical nuclear factor-κB (NF-κB) pathway. Taken together, these results suggested that the classical NF-κB pathway-activated AC007271.3 regulates EMT by miR-125b-2-3p/Slug/E-cadherin axis to promote the development of OSCC, implicating it as a novel potential target for therapeutic intervention in this disease.


Sign in / Sign up

Export Citation Format

Share Document