scholarly journals The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis

Author(s):  
Xinjing Wang ◽  
Xiaoduan Li ◽  
Feikai Lin ◽  
Huizhen Sun ◽  
Yingying Lin ◽  
...  

Abstract Background Ovarian cancer is highly lethal and has a poor prognosis due to metastasis. Long non-coding RNAs (lncRNAs) are key regulators of tumor development, but their role in ovarian cancer metastasis remains unclear. Methods The expression of lnc-CTSLP8 in ovarian cancer was analyzed in public databases (TCGA and GEO) and validated via qRT-PCR. Lnc-CTSLP8 overexpression and knockout cell lines were constructed using a lentiviral vector and the CRISP/Cas9 system. Cell proliferation, colony formation, migration, and invasion were analyzed. An ovarian orthotopic tumor mouse model was used for the in vivo study. Changes in autophagosomes, autolysosomes, and mitochondria in ovarian cancer cells were observed via transmission electron microscopy. EMT markers were detected by immunoblotting and immunofluorescence assays. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assays were performed to confirm the interaction between lnc-CTSLP8 and miR-199a-5p. Results A novel pseudogene, lnc-CTSLP8, was identified in ovarian cancer, with significantly elevated expression in metastatic tumor tissues compared to primary ovarian tumors. When overexpressed, lnc-CTSLP8 promoted ovarian cancer in vitro and in vivo by acting as a sponge for miR-199a-5p. Autophagy and EMT in ovarian cancer were also enhanced by lnc-CTSLP8. Mechanistically, lnc-CTSLP8 upregulated CTSL1 as a competitive endogenous RNA and exhibited oncogenic effects. Moreover, CTSL1 inhibitor treatment and miR-199a-5p overexpression abrogated the effects of lnc-CTSLP8 overexpression. Conclusions lnc-CTSLP8 acts as a ceRNA in ovarian cancer and represents a potential therapeutic target for metastatic ovarian cancer.

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhendan Zhao ◽  
Zhiling Wang ◽  
Pengling Wang ◽  
Shujie Liu ◽  
Yingwei Li ◽  
...  

Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.


Author(s):  
Jingjing Zhang ◽  
Yun Li ◽  
Hua Liu ◽  
Jiahui Zhang ◽  
Jie Wang ◽  
...  

Abstract Background The development of lethal cancer metastasis depends on the dynamic interactions between cancer cells and the tumor microenvironment, both of which are embedded in the extracellular matrix (ECM). The acquisition of resistance to detachment-induced apoptosis, also known as anoikis, is a critical step in the metastatic cascade. Thus, a more in-depth and systematic analysis is needed to identify the key drivers of anoikis resistance. Methods Genome-wide CRISPR/Cas9 knockout screen was used to identify critical drivers of anoikis resistance using SKOV3 cell line and found protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) as a candidate. Quantitative real-time PCR (qRT-PCR) and immune-histochemistry (IHC) were used to measure differentially expressed PCMT1 in primary tissues and metastatic cancer tissues. PCMT1 knockdown/knockout and overexpression were performed to investigate the functional role of PCMT1 in vitro and in vivo. The expression and regulation of PCMT1 and integrin-FAK-Src pathway were evaluated using immunoprecipitation followed by mass spectrometry (IP-MS), western blot analysis and live cell imaging. Results We found that PCMT1 enhanced cell migration, adhesion, and spheroid formation in vitro. Interestingly, PCMT1 was released from ovarian cancer cells, and interacted with the ECM protein LAMB3, which binds to integrin and activates FAK-Src signaling to promote cancer progression. Strikingly, treatment with an antibody against extracellular PCMT1 effectively reduced ovarian cancer cell invasion and adhesion. Our in vivo results indicated that overexpression of PCMT1 led to increased ascites formation and distant metastasis, whereas knockout of PCMT1 had the opposite effect. Importantly, PCMT1 was highly expressed in late-stage metastatic tumors compared to early-stage primary tumors. Conclusions Through systematically identifying the drivers of anoikis resistance, we uncovered the contribution of PCMT1 to focal adhesion (FA) dynamics as well as cancer metastasis. Our study suggested that PCMT1 has the potential to be a therapeutic target in metastatic ovarian cancer.


2021 ◽  
Author(s):  
Xin Liu ◽  
Zhenghao Huang ◽  
Honglei Qin ◽  
Jingwen Chen ◽  
Yang Zhao

Abstract BackgroundLong non-coding RNA (LncRNA) has been exhibited to exert significant function among human cancers. AC022306.2, as a newly discovered lncRNA, has an unclear function in ovarian cancer (OC). This study aims to uncover the functional role of AC022306.2 in OC and discover its possible mechanism. MethodsThe expression of AC022306.2 and Galactokinase 2 (GALK2) in OC tissues and adjacent non-tumor tissues was detected via qRT-PCR. The CCK-8 assay, cell clonogenesis assay, scratch healing assay and trans-well assay were used to reveal the function of AC022306.2 and GALK2 in ovarian cancer cell lines. Mice xenografts experiment was performed. Bioinformatics predicted the microRNA (miRNA) that bond with AC022306.2 and GALK2, and dual luciferase reporter system confirmed it. Rescue experiments of miRNA mimics and siGALK2 transfection on the basis of AC022306.2 over-expression were carried out to uncover the mechanism by which AC022306.2 played cancer-promoting roles in ovarian cancer.ResultsIt was found that AC022306.2 was up-regulated in EOC tissues compared with adjacent non-tumor tissues. The elevated expression of AC022306.2 was related to the FIGO stage of OC. Functional experiments showed that AC022306.2 overexpression accelerated proliferation and aggression of OC cells in vitro and accelerated tumor growth in vivo. We also found that GALK2 was up-regulated in OC tissues. The expression of GALK2 mRNA in OC tissue was positively associated with the expression of AC022306.2. After AC022306.2 was knocked down, the expression of GALK2 was down-regulated. In addition, GALK2 depletion restored the proliferation and aggression capabilities of OC cells after AC022306.2 overexpression. Mechanically, AC022306.2 acted as a competitive endogenous RNA (ceRNA) of miR-369-3p to modulate the expression of GALK2. The up-regulating of miR-369-3p or the down-regulating of GALK2 partially reversed the effect of AC022306.2 overexpressed on cell propagation and aggression in OC. ConclusionsAC022306.2 is a new oncogene in the carcinogenesis and development of OC. AC022306.2 improves the development of OC by regulating the miR-369-3p / GALK2 axis, indicating that AC022306.2 may have the potential to become a new molecular target for the treatment of OC.


2017 ◽  
Vol Volume 10 ◽  
pp. 3579-3589 ◽  
Author(s):  
Jingjing Lu ◽  
Ying Xu ◽  
Zhe Zhao ◽  
Xiaoning Ke ◽  
Xuan Wei ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Li ◽  
Songlin Zhang ◽  
Lei Wu ◽  
Meili Pei ◽  
Yu Jiang

AbstractOvarian cancer is the first leading cause of death in gynecological cancers. The continuous survival and metastasis of cancer cells are the main causes of death and poor prognosis in patients with ovarian cancer. Berberine is an effective component extracted from the rhizomes of coptis chinensis and phellodendron chinensis. In our study, we aim to explore the molecular mechanism underlying the regulation of proliferation, migration and invasion by berberine in ovarian cancer cells. CCK8 assay was used for detection of proliferative capacity of SKOV3 and 3AO cells. Wound healing assay was used to estimate cell migration and transwell assay was used to assess cell invasion. The mRNA expression of miR-145 and MMP16 were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein level of MMP16 was detected by western blot analysis. In addition, luciferase reporter assays were used to demonstrate MMP16 was a target of miR-145. The results demonstrated berberine inhibited proliferation, migration and invasion, promoted miR-145 expression, and decreased MMP16 expression in SKOV3 and 3AO cells. MMP16 was a target of miR-145. Moreover, downregulation of MMP16 contributed to the inhibition of proliferation, migration and invasion by berberine. Together, our results revealed that berberine inhibited proliferation, migration and invasion through miR-145/MMP16 in SKOV3 and 3AO cells, highlighting the potentiality of berberine to be used as a therapeutic agent for ovarian cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Yang ◽  
Yunrui Guo ◽  
Yecai Zhang ◽  
Decai Wang ◽  
Guoyun Zhang ◽  
...  

Abstract Background Propofol is commonly used for anesthesia during surgery and has been demonstrated to inhibit cancer development, which is shown to be associated with deregulation of non-coding RNAs (ncRNAs). The objective of this study was to explore the role of circular RNA mucin 16 (circ_MUC16) in Propofol-mediated inhibition of ovarian cancer. Methods The expression of circ_MUC16, microRNA-1182 (miR-1182) and S100 calcium-binding protein B (S100B) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). The expression of S100B protein was checked by western blot. Cell proliferation was assessed by 3-(4, 5-di methyl thiazol-2-yl)-2, 5-di phenyl tetrazolium bromide (MTT) assay and colony formation assay. Glycolysis metabolism was assessed by glucose consumption, lactate production and ATP level. Cell migration and cell invasion were assessed by transwell assay. Cell migration was also assessed by wound healing assay. Animal study was conducted in nude mice to determine the role of circ_MUC16 in vivo. The relationship between miR-1182 and circ_MUC16 or S100B was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Propofol inhibited ovarian cancer cell proliferation, glycolysis metabolism, migration and invasion, which were partly recovered by circ_MUC16 overexpression. Circ_MUC16 was downregulated in Propofol-treated ovarian cancer cells. Besides, circ_MUC16 knockdown enhanced the effects of Propofol to further inhibit tumor growth in vivo. MiR-1182 was a target of circ_MUC16, and circ_MUC16 knockdown-inhibited cell proliferation, glycolysis metabolism, migration and invasion were partly restored by miR-1182 inhibition. In addition, S100B was a target of miR-1182, and miR-1182-suppressed cell proliferation, glycolysis metabolism, migration and invasion were partly restored by S100B overexpression. Conclusion Circ_MUC16 overexpression alleviated the effects of Propofol to promote the aggressive behaviors of ovarian cancer by targeting the miR-1182/S100B network.


2021 ◽  
Author(s):  
Wei Zhu ◽  
Xiangming Xiao ◽  
Jinqin Chen

Abstract Background: To date, long intergenic nonprotein coding RNA 1132 (LINC01132) expression in epithelial ovarian cancer (EOC) and the underlying mechanisms have not been explored. In this study, we measured LINC01132 expression in EOC and assessed the effects of LINC01132 on the malignant behaviours of EOC cells in vitro and in vivo. Additionally, mechanistic studies were performed to elucidate the molecular events that occurred downstream of LINC01132 in EOC cells. Methods: Reverse-transcription quantitative PCR (RT-qPCR) was utilized to verify LINC01132 expression in EOC. The effects of LINC01132 on the malignant behaviours of EOC cells were determined using a Cell Counting Kit-8 assay, flow cytometry analysis, cell migration and invasion assays and a tumour xenograft model. The targeting interaction among LINC01132, microRNA-431-5p (miR-431-5p) and SRY-Box 9 (SOX9) was verified by RNA immunoprecipitation and luciferase reporter assays. Results: LINC01132 was overexpressed in EOC and was obviously associated with poor patient prognosis. Functionally, cell experiments revealed that LINC01132 depletion could inhibit EOC cell proliferation, migration and invasion and promote cell apoptosis in vitro. Additionally, loss of LINC01132 attenuated tumour growth in vivo. Mechanistically, LINC01132 acted as a competing endogenous RNA by sequestering miR-431-5p and thereby increasing SOX9 expression in EOC cells, forming a LINC01132/miR-431-5p/SOX9 axis. In rescue experiments, miR-431-5p inhibition or SOX9 re-expression eliminated the inhibitory effects of LINC01132 silencing on the pathological behaviours of EOC cells. Conclusions: Generally, LINC01132 exhibited oncogenic activities in EOC cells in vitro and in vivo by regulating the outcome of the miR-431-5p/SOX9 axis, providing an effective target for EOC diagnosis, therapy and prognosis evaluation.


2019 ◽  
Vol 41 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Huijuan Tang ◽  
Yijing Chu ◽  
Zaiju Huang ◽  
Jing Cai ◽  
Zehua Wang

Abstract Ovarian cancer metastasizes to organs in the abdominal cavity, such as the omentum that is a rich source of adipose-derived mesenchymal stem cells (ADSCs). In present, ADSCs have received more and more attention for their roles in the development of cancer. In this study, we examined α-smooth muscle actin (α-SMA) expression and carcinoma-associated fibroblast (CAF)-like differentiation capabilities in ADSCs from omentum of different patients. The effects of ADSCs on the proliferation and invasion of epithelial ovarian cancer cells (EOCCs) were also assessed in vitro and in vivo. Our results showed that ADSCs from omentum of ovarian cancer patients, no matter whether metastasis or not, expressed higher levels of α-SMA than ADSCs from patients with benign gynecologic disease. Using direct and indirect co-culture system, we found that EOCCs induced ADSCs to express CAF markers, including α-SMA and fibroblast activation protein, via the transforming growth factor beta 1 (TGF-β1) signaling pathway. Moreover, co-cultured ADSCs exhibited functional properties similar to those of CAFs, including the ability to promote EOCCs proliferation, progression and metastasis both in vitro and in vivo. Furthermore, blocking the TGF-β1 pathway can counteract the CAF-like differentiation and tumor promotion effect of ADSCs. Our results suggest that ADSCs are a source of CAFs and that they participate in the interaction between EOCCs and the omental microenvironment. EOCCs could induce ADSCs in the omentum to differentiate before ovarian cancer metastasis, which participate in the formation of omental metastatic niches and promote the proliferation and invasion of ovarian cancer.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Jing Cai ◽  
Lanqing Gong ◽  
Guodong Li ◽  
Jing Guo ◽  
Xiaoqing Yi ◽  
...  

AbstractThe poor prognosis of ovarian cancer is mainly due to metastasis, and the specific mechanism underlying ovarian cancer metastasis is not clear. Ascites-derived exosomes (ADEs) play an important role in the progression of ovarian cancer, but the mechanism is unknown. Here, we found that ADEs promoted ovarian cancer metastasis not only in vitro but also in vivo. This promotive function was based on epithelial–mesenchymal transition (EMT) of ovarian cancer cells. Bioinformatics analysis of RNA sequencing microarray data indicated that miR-6780b-5p may be the key microRNA (miRNA) in ADEs that facilitates cancer metastasis. Moreover, the expression of exosomal miR-6780b-5p correlated with tumor metastasis in ovarian cancer patients. miR-6780b-5p overexpression promoted and miR-6780b-5p downregulation suppressed EMT of ovarian cancer cells. These results suggest that ADEs transfer miR-6780b-5p to ovarian cancer cells, promoting EMT and finally facilitating ovarian cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document