scholarly journals LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425-5p

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yinling Zhao ◽  
Donglan Yuan ◽  
Dandan Zhu ◽  
Tianhui Xu ◽  
Aihua Huang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were reported to be aberrantly expressed and related to the pathogenesis of ovarian cancer. However, the role and regulatory mechanism of MSC-AS1 in ovarian cancer has yet to be fully elucidated. Methods Expression of lncRNA MSC-AS1 (MSC-AS1) and microRNA-425-5p (miR-425-5p) in the ovarian cancer tissue samples and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The functions of MSC-AS1 on ovarian cancer cell proliferation, cell cycle and apoptosis were determined using MTT, colony formation and flow cytometry analyses. The protein expression levels were evaluated using western blot assay. The targeting relationship MSC-AS1 and miR-425-5p was verified via dual-luciferase reporter assay. Results MSC-AS1 expression level was lowly expressed, while miR-425-5p level was highly in ovarian cancer tissues and cells. Elevation of MSC-AS1 has the ability to significantly inhibit cell proliferation and facilitate cell apoptosis in SKOV3 and A2780 cells. Moreover, MSC-AS1 targeted and negatively modulated miR-425-5p. MiR-425-5p up-regulation has been proved to partially reverse the tumor suppressive function of MSC-AS1 overexpression Conclusion MSC-AS1 sponged miR-425-5p to inhibit the ovarian cancer progression. These findings may provide a promising therapeutic target for the treatment of ovarian cancer.

2021 ◽  
Author(s):  
Yinling Zhao ◽  
Donglan Yuan ◽  
Dandan Zhu ◽  
Tianhui Xu ◽  
Aihua Huang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were reported to be aberrantly expressed and related to the pathogenesis of ovarian cancer. However, the role and regulatory mechanism of MSC-AS1 in ovarian cancer has yet to be fully elucidated. Methods Expression of lncRNA MSC-AS1 (MSC-AS1) and microRNA-425-5p (miR-425-5p) in the ovarian cancer tissue samples and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The functions of MSC-AS1 on ovarian cancer cell proliferation, cell cycle and apoptosis were determined using MTT, colony formation and flow cytometry analyses. The protein expression levels were evaluated using western blot assay. The targeting relationship MSC-AS1 and miR-425-5p was verified via dual-luciferase reporter assay. Results MSC-AS1 expression level was lowly expressed, while miR-425-5p level was highly in ovarian cancer tissues and cells. Elevation of MSC-AS1 has the ability to significantly inhibit cell proliferation and facilitate cell apoptosis in SKOV3 cells. Moreover, MSC-AS1 targeted and negatively modulated miR-425-5p. MiR-425-5p up-regulation has been proved to partially reverse the tumor suppressive function of MSC-AS1 overexpression. Conclusion MSC-AS1 sponged miR-425-5p to inhibit the ovarian cancer progression. These findings may provide a promising therapeutic target for the treatment of ovarian cancer.


2021 ◽  
Vol 7 (5) ◽  
pp. 3997-4004
Author(s):  
Zhibo Zou ◽  
Lin Peng

Objective: This study aimed to probe into the effect of LncRNA SNHG14 on ovarian cancer progression by regulating miR-206.Methods: Fifty-seven ovarian cancer (OC) patients who were treated in our hospital from December 2017 to December 2019 were collected as the research objects. During the operation, OC tissues and paracancerous tissues of patients were collected, and the effect of SNHG14 on OC tumor growth in nude mice was detected, and SNHG14 inhibitor was transfected into OC cells. The relative expression of SNHG14 in tissues and cells was detected by qRT-PCR, cell proliferation was testedvia CCK8, migration and invasion were detected through Transwell, apoptosis was assessedvia flow cytometry, and the targeted relationship between SNHG14 and miR-206 was detected by dual luciferase reporter gene.Results: SNHG14 is highly expressed in OC tissues, cells and nude mice. Down-regulating it can inhibit the biological ability of OC cells and inhibit the growth of nude mice tumors. It can directly target miR-206 to regulate CCND1 expression and promote OC progression.Conclusion: LncRNA SNHG14 can act as miR-206 sponge to regulate CCND1 expression downstream of miR-206 and promote OC progression.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Deying Wang ◽  
Yulan Cui ◽  
Aili Xu ◽  
Lin Zhao ◽  
Peiling Li

Abstract Background Epithelial ovarian cancer (EOC), a subclass of ovarian cancer (OC), is usually diagnosed at advanced stages due to the lack of effective screening means. Mounting reports have disclosed the vitally important roles of microRNAs (miRNAs) in carcinogenesis. Here, we aimed to find out possible miRNAs participating in EOC development. Methods qRT-PCR ad western blot respectively examined the mRNA and protein levels of studied genes. CCK-8, colony formation, flow cytometry, TUNEL and spheroid formation assays were appropriately employed for examining cell proliferation, cell cycle, apoptosis and stemness. The interaction between molecules was affirmed by luciferase reporter, RNA pull down and ChIP assays. Results In consistent with the observation of a past study, miR-596 expression was relatively low in EOC cells. Up-regulating miR-596 suppressed EOC cell proliferation and stemness. EP300 transcriptionally activated miR-596 to serve as a tumor-repressor in EOC. Then BRD4 and KPNA4, whose knockdown led to restraining effects on cell growth and stemness, were both revealed to be targeted by miR-596 in EOC. Lastly, rescue assays affirmed the tumor-restraining role of miR-596-BRD4/KPNA4 axis in EOC. Conclusion EP300-activated miR-596 hampered cell growth and stemness via targeting BRD4 and KPNA4 in EOC, proofing miR-596 as a promising therapeutic target in treating EOC patients.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shujun Cao ◽  
Na Li ◽  
Xihong Liao

Abstract Background Ovarian cancer is the leading lethal gynecological cancer and is generally diagnosed during late-stage presentation. In addition, patients with ovarian cancer still face a low 5-year survival rate. Thus, innovative molecular targeting agents are required to overcome this disease. The present study aimed to explore the function of miR-362-3p and the underlying molecular mechanisms influencing ovarian cancer progression. Methods The expression levels of miR-362-3p were determined using qRT-PCR. Gain-of-function and loss-of-function methods were used to detect the effects of miR-362-3p on cell proliferation, cell migration, and tumor metastasis in ovarian cancer. A luciferase reporter assay was performed to confirm the potential target of miR-362-3p, and a rescue experiment was employed to verify the effect of miR-362-3p on ovarian cancer by regulating its target gene. Results miR-362-3p was significantly downregulated in ovarian cancer tissues and cell lines. In vitro, our data showed that miR-362-3p suppressed cell proliferation and migration. In vivo, miR-362-3p inhibited ovarian cancer growth and metastasis. Mechanistically, SERBP1 was identified as a direct target and functional effector of miR-362-3p in ovarian cancer. Moreover, SERBP1 overexpression rescued the biological function of miR-362-3p. Conclusions Our data reveal that miR-362-3p has an inhibitory effect on ovarian cancer. miR-362-3p inhibits the development and progression of ovarian cancer by directly binding its target gene SERBP1.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingfeng Gu ◽  
Liang Dong ◽  
Yun Wang ◽  
Wenjia Nie ◽  
Wencong Liu ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) are related to colorectal cancer (CRC) development. However, the role and mechanism of lncRNA LINC01224 in CRC development are largely unknown. Methods LINC01224, Yin Yang 1 (YY1), microRNA (miR)-485-5p, and myosins of class VI (MYO6) levels were examined using quantitative reverse transcription polymerase chain reaction and western blotting. Functional analyses were processed through CCK-8, colony formation, flow cytometry, transwell, and xenograft analyses. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation, and pull-down assays were conducted to analyze the binding interaction. Results LINC01224 abundance was elevated in CRC tissue samples and cell lines. Elevated LINC01224 might indicate the lower 5-year overall survival in 52 CRC patients. LINC01224 was upregulated via the transcription factor YY1. LINC01224 knockdown restrained CRC cell proliferation, migration, and invasion and increased apoptosis. MiR-485-5p was sponged by LINC01224, and miR-485-5p downregulation relieved the influence of LINC01224 interference on CRC progression. MYO6 was targeted via miR-485-5p and regulated via LINC01224/miR-485-5p axis. MiR-485-5p overexpression suppressed CRC cell proliferation, migration, and invasion and facilitated apoptosis. MYO6 upregulation mitigated the role of miR-485-5p. LINC01224 knockdown decreased xenograft tumor growth. Conclusion YY1-induced LINC01224 regulates CRC development via modulating miR-485-5p/MYO6 axis.


2018 ◽  
Vol 22 (5) ◽  
pp. 355-359 ◽  
Author(s):  
Kalyani Khanra ◽  
Indranil Choudhuri ◽  
Nandan Bhattacharyya ◽  
◽  
◽  
...  

2004 ◽  
Vol 76 (2) ◽  
pp. 138-142 ◽  
Author(s):  
Hisanori Kato ◽  
Atsushi Arakawa ◽  
Kaoru Suzumori ◽  
Nobuhiko Kataoka ◽  
S.Robert Young

2020 ◽  
Author(s):  
Ning Wang ◽  
Qin-Xue Cao ◽  
Jun Tian ◽  
Lu Ren ◽  
Hai-Ling Cheng ◽  
...  

Abstract Background Ovarian cancer remains one of the most challenging areas of cancer research. Recent studies have shown that many long non-coding RNAs (lncRNAs) are abnormally expressed in ovarian cancer and involved in the pathological progress of ovarian cancer. In the present study, we aimed to investigate the role of lncRNA LINC00858 and the potential mechanism in ovarian cancer. Methods The qRT-PCR was used to measure the expression levels of LINC00858 and miR-134-5p in ovarian cancer tissue specimens and cell lines. Loss-of-function assays were performed to investigate the role of LINC00858 in ovarian cancer progression. MTT assay was carried out to measure cell proliferation. Transwell assays were performed to determine the migration and invasion of ovarian cancer cells. Biological information analysis and luciferase report gene assay were used to verify potential downstream genes of LINC00858. The xenograft mouse model was established to analyze tumor growth in vivo. Results Our results showed that LINC00858 was highly expressed in human ovarian cancer tissue specimens and cell lines. Loss-of-function assays showed that knockdown of LINC00858 significantly inhibited cell proliferation, migration and invasion of SKOV3 cells, and suppressed tumor growth in mouse xenograft models. Mechanistic studies revealed that LINC00858 acted as a sponge of miR-134-5p and then regulated the expression TRIM44 in SKOV3 cells. Furthermore, rescue experiments illustrated that inhibition of miR-134-5p restored the inhibitory effects of LINC00858 knockdown on ovarian cancer cell proliferation, migration and invasion. TRIM44 overexpression could counteract the inhibitory effects of miR-134-5p mimics on ovarian cancer cells. Conclusion In conclusion, these findings demonstrated that LINC00858 exerted oncogenic role in ovarian cancer, which was mediated by miR-134-5p/TRIM44 axis. Thus, LINC00858 might be a therapeutic target for the treatment of ovarian cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Liping Wang ◽  
Chenchen Ren ◽  
Yajuan Xu ◽  
Li Yang ◽  
Yannan Chen ◽  
...  

Abstract Background Long noncoding RNA (lncRNA) LINC00922 has been reported to promote tumorigenesis of lung and breast cancer. However, the functions and mechanisms of LINC00922 in ovarian cancer (OC) remain unclarified. The current study aims to clarify the detailed functions and underlying mechanisms of LINC00922 in the progression of OC. Methods LINC00922 expression in OC tissues and cells was identified by a comprehensive strategy of data miming, computational biology and quantitative real-time polymerase chain reaction (RT-qPCR) experiment. In vitro CCK-8, wound healing, transwell invasion, western blotting and in vivo tumorigenesis assays LINC00922 were conducted to evaluate the functions of LINC00992. Subsequently, bioinformatics technology and dual luciferase reporter assay were performed to confirm the between miR-361-3p and LINC00922 or CLDN1. Finally, rescue experiments were performed to confirm whether LINC00922 effect functions of OC cells through regulation of miR-361-3p. Results LINC00922 was significantly upregulated in OC tissues and cell lines, which is significantly positively corelated with the poor prognosis of patients with OC. LINC00922 knockdown inhibited proliferation and tumorigenesis of OC cells in vitro and vivo. In addition, LINC00922 knockdown suppressed migration, invasion, and EMT of OC cells in vitro. Mechanically, LINC00922 could competitively bind with miR-361-3p to relieve the repressive effect of miR-361-3p on its target gene CLDN1 in OC cells. In addition, silencing miR-361-3p promoted OC cell proliferation, migration, invasion, EMT and Wnt/β-catenin signaling, while LINC00922 knockdown inhibited Wnt/β-catenin signaling by upregulating miR-361-3p. Rescue experiments revealed that LINC00922 knockdown inhibited OC cell proliferation, migration, invasion and EMT by regulating miR-361-3p. Conclusion This study suggested that LINC00922 could competitively bind with miR-361-3p to promote the CLDN1 expression and activate Wnt/β-catenin signaling in OC progression, which providing a promising therapeutically target for OC.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 725-734
Author(s):  
Cheng-Sheng Lin ◽  
Yi-Cheng Tsai ◽  
Keng-Fu Hsu ◽  
Gwo-Bin Lee

Optimization of aptamer selection using tissue samples has been carried out on an automated microfluidic system and one screened aptamer exhibited high specificity and affinity towards ovarian cancer tissue.


Sign in / Sign up

Export Citation Format

Share Document