scholarly journals MiR-596 activated by EP300 controls the tumorigenesis in epithelial ovarian cancer by declining BRD4 and KPNA4

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Deying Wang ◽  
Yulan Cui ◽  
Aili Xu ◽  
Lin Zhao ◽  
Peiling Li

Abstract Background Epithelial ovarian cancer (EOC), a subclass of ovarian cancer (OC), is usually diagnosed at advanced stages due to the lack of effective screening means. Mounting reports have disclosed the vitally important roles of microRNAs (miRNAs) in carcinogenesis. Here, we aimed to find out possible miRNAs participating in EOC development. Methods qRT-PCR ad western blot respectively examined the mRNA and protein levels of studied genes. CCK-8, colony formation, flow cytometry, TUNEL and spheroid formation assays were appropriately employed for examining cell proliferation, cell cycle, apoptosis and stemness. The interaction between molecules was affirmed by luciferase reporter, RNA pull down and ChIP assays. Results In consistent with the observation of a past study, miR-596 expression was relatively low in EOC cells. Up-regulating miR-596 suppressed EOC cell proliferation and stemness. EP300 transcriptionally activated miR-596 to serve as a tumor-repressor in EOC. Then BRD4 and KPNA4, whose knockdown led to restraining effects on cell growth and stemness, were both revealed to be targeted by miR-596 in EOC. Lastly, rescue assays affirmed the tumor-restraining role of miR-596-BRD4/KPNA4 axis in EOC. Conclusion EP300-activated miR-596 hampered cell growth and stemness via targeting BRD4 and KPNA4 in EOC, proofing miR-596 as a promising therapeutic target in treating EOC patients.

2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jianlei Zhang ◽  
Wei Liu ◽  
Yabo Wang ◽  
Shengnan Zhao ◽  
Na Chang

miR-135a-5p was reported to play a crucial role in the protective effects of hydrogen sulfide against Parkinson’s disease (PD) by targeting rho-associated protein kinase 2 (ROCK2). However, the role of another member of miR-135 family (miR-135b) and the underlying mechanism in PD are still unclear. qRT-PCR and western blot showed that miR-135 was downregulated and glycogen synthase kinase 3β (GSK3β) was upregulated at mRNA and protein levels in MPP+-intoxicated SH-SY5Y cells in a dose- and time-dependent manner. MTT, TUNEL, and ELISA assays revealed that miR-135b overexpression significantly promoted cell proliferation and inhibited apoptosis and production of TNF-α and IL-1β in SH-SY5Y cells in the presence of MPP+. Luciferase reporter assay demonstrated that GSK3β was a direct target of miR-135b. Moreover, sodium nitroprusside (SNP), a GSK3β activator, dramatically reversed the effects of miR-135b upregulation on cell proliferation, apoptosis, and inflammatory cytokine production in MPP+-intoxicated SH-SY5Y cells. Taken together, miR-135b exerts a protective role via promotion of proliferation and suppression of apoptosis and neuroinflammation by targeting GSK3β in MPP+-intoxicated SH-SY5Y cells, providing a potential therapeutic target for the treatment of PD.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2015 ◽  
Vol 37 (3) ◽  
pp. 1044-1054 ◽  
Author(s):  
Hong-tao Li ◽  
Hui Zhang ◽  
Yong Chen ◽  
Xian-fu Liu ◽  
Jun Qian

Background/Aims: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths globally, with many oncogenes and tumor suppressors involved. The miRNAs are small non-coding RNAs known to play a vital role in the pathogenesis of CRC. The miR-423-3p was reported to act as an oncogene; however, its role in CRC growth remains unknown. Methods: qPCR assay was used to detect miR-423-3p expression in CRC specimens. Cell proliferation assay and transwell assay were conducted to evaluate CRC cell proliferation and migration. Luciferase reporter assay was to identify the target gene of miR-423-3p. And tumorigenesis model was established to test the role of miR-423-3p in CRC development in vivo. Results: Here, we showed that miR-423-3p was significantly up regulated in CRC tissues and cells compared with normal tissues and cells. Overexpression of miR-423-3p promoted CRC cell proliferation via enhancing the G1/S transition phase of the cell cycle, while inhibition of miR-423-3p repressed cell growth. Further studies showed that p21Cip1/Waf1 mediated the function of miR-423-3p, and overexpression of p21Cip1/Waf1 reversed the augmented effect of miR-423-3p on cell proliferation. Importantly, all these data were validated in the tumorigenesis assay in vivo. Conclusions: In conclusion, our findings demonstrated a critical impact of miR-423-3p on CRC growth.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Yang ◽  
Yunrui Guo ◽  
Yecai Zhang ◽  
Decai Wang ◽  
Guoyun Zhang ◽  
...  

Abstract Background Propofol is commonly used for anesthesia during surgery and has been demonstrated to inhibit cancer development, which is shown to be associated with deregulation of non-coding RNAs (ncRNAs). The objective of this study was to explore the role of circular RNA mucin 16 (circ_MUC16) in Propofol-mediated inhibition of ovarian cancer. Methods The expression of circ_MUC16, microRNA-1182 (miR-1182) and S100 calcium-binding protein B (S100B) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). The expression of S100B protein was checked by western blot. Cell proliferation was assessed by 3-(4, 5-di methyl thiazol-2-yl)-2, 5-di phenyl tetrazolium bromide (MTT) assay and colony formation assay. Glycolysis metabolism was assessed by glucose consumption, lactate production and ATP level. Cell migration and cell invasion were assessed by transwell assay. Cell migration was also assessed by wound healing assay. Animal study was conducted in nude mice to determine the role of circ_MUC16 in vivo. The relationship between miR-1182 and circ_MUC16 or S100B was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Propofol inhibited ovarian cancer cell proliferation, glycolysis metabolism, migration and invasion, which were partly recovered by circ_MUC16 overexpression. Circ_MUC16 was downregulated in Propofol-treated ovarian cancer cells. Besides, circ_MUC16 knockdown enhanced the effects of Propofol to further inhibit tumor growth in vivo. MiR-1182 was a target of circ_MUC16, and circ_MUC16 knockdown-inhibited cell proliferation, glycolysis metabolism, migration and invasion were partly restored by miR-1182 inhibition. In addition, S100B was a target of miR-1182, and miR-1182-suppressed cell proliferation, glycolysis metabolism, migration and invasion were partly restored by S100B overexpression. Conclusion Circ_MUC16 overexpression alleviated the effects of Propofol to promote the aggressive behaviors of ovarian cancer by targeting the miR-1182/S100B network.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rongcai Liu ◽  
Weimin Dai ◽  
An Wu ◽  
Yunping Li

Abstract Background Glioblastoma (GBM) is characterized by progressive growth and metastasis. Numerous studies claim that the deregulation of circular RNAs (circRNAs) is associated with cancer progression. However, the role of circRNAs in GBM is largely limited. The purpose of this study was to investigate the functions of circCDC45 in GBM and provide a feasible functional mechanism to support its role. Methods The expression of circCDC45, miR-485-5p and colony-stimulating factor 1 (CSF-1) mRNA was examined using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed using cell counting kit − 8 (CCK-8) assay and colony formation assay. Cell migration and cell invasion were monitored using transwell assay. The protein levels of proliferation-related markers and CSF-1 were determined using western blot. The target relationship was predicted using bioinformatics tools and validated using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Animal models were constructed to verify the role of circCDC45 in vivo. Results The expression of circCDC45 and CSF-1 was elevated in GBM tissues and cells, while the expression of miR-485-5p was declined. Downregulation of circCDC45 or CSF-1 blocked GBM cell proliferation, invasion and migration as well as tumor growth in vivo. In mechanism, circCDC45 positively regulated the expression of CSF-1 by targeting miR-485-5p. Inhibition of miR-485-5p reversed the biological effects caused by circCDC45 downregulation in GBM cells. Conclusion CircCDC45 promoted the progression of GBM by mediating the miR-485-5p/CSF-1 axis, and circCDC45 might be a promising plasmatic biomarker for GBM diagnosis and treatment.


2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Fan Zhang ◽  
Bai-Hua Luo ◽  
Qi-Hui Wu ◽  
Qing-Ling Li ◽  
Ke-Da Yang

Abstract Background Although long noncoding RNA HLA complex group 18 (lncRNA HCG18) has been suggested to regulate cell growth in several tumours, the function of HCG18 in epithelial ovarian cancer (EOC) and its mechanism are still unclear. Methods shRNAs were applied to reduce HCG18 and related genes. For overexpression of miRNA, a miRNA mimic was transfected into cells. Quantitative real-time PCR (qRT–PCR) was used to detect levels of HCG18, miR-29a/b, and mRNAs. MTT, colony formation, wound healing and Transwell assays were used to evaluate cell proliferation, migration and invasion, respectively. A luciferase reporter assay was utilized to evaluate NF-κB activity and the binding of miRNAs with HCG18 or TRAF4/5. BALB nude mice injected with cells stably expressing shHCG18 or shNC were used for in vivo modelling. Subcutaneous tumour growth was monitored in nude mice, and immunohistochemistry (IHC) was used to determine expression of the proliferation marker Ki67. Results Abnormal expression of HCG18 and miR-29a/b was observed in EOC tissues. Knockdown of HCG18 using shRNA inhibited proliferation, migration, EMT and the proinflammatory pathway in EOC cells. miR-29a/b mimics and TRAF4/5 knockdown exhibited effects similar to HCG18 knockdown. Further experiments suggested that HCG18 directly targets miR-29a/b and upregulates TRAF4/5 expression, which are inhibited by targeting miR-29a/b. Moreover, overexpression of TRAF4/5 antagonized the inhibitory effect of HCG18 knockdown, suggesting that they are involved in HCG18-mediated oncogenic effects. Silencing HCG18 reduced tumour size and levels of Ki67 and TRAF4/5 while increasing miR-29a/b levels in vivo. Conclusions Taken together, our data revealed an oncogenic signalling pathway mediated by HCG18 in ovarian cell lines, which functions as a ceRNA of miR-29a/b and thus derepresses expression levels of TRAF4/5, facilitating NF-κB pathway-mediated promotion of EOC cell proliferation and migration.


2020 ◽  
Author(s):  
Yunhe An ◽  
Jun Zhang ◽  
Yanjie Tian ◽  
Baoming Li ◽  
Xiaoyan Cheng ◽  
...  

Abstract Background The aberrant expression of microRNA-454 (miR-454) has been confirmed to be involved in the development of cancers. However, the functional role of miR-454 in the progression of ovarian cancer remains unclear. Methods The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis, respectively. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry (IHC) assay. The relative expression of related proteins was examined using western blot analysis. Results miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal samples, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and correlated with the clinicopathological stages of ovarian cancer. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454 in ovarian cancer cells. Mechanically, bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a direct target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, IHC analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression. Conclusion Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer cells by targeting E2F6, indicating that miR-454 may be a potential diagnostic biomarker and therapeutic target for ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document