scholarly journals Flow-cytometry-based physiological characterisation and transcriptome analyses reveal a mechanism for reduced cell viability in yeast engineered for increased lipid content

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Huadong Peng ◽  
Lizhong He ◽  
Victoria S. Haritos
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianghao Gong ◽  
Shangjun Fu ◽  
Zhenghao Zhou

Objective. To explore the effects of silicone gel nanoparticles modified with octacalcium phosphate on the surface (silica/OCP) polymer drugs on the proliferation of osteoblasts and autophagy. Method. Silica/OCP was prepared in vitro, and the quality of the sample preparation was tested through characterization experiments. The osteoblast cell line (hFOB1.19) was treated with silica/OCP, autophagy inhibitor (3-methyladenine (3-MA)), and silica/OCP+3-MA, respectively. The proliferation of hFOB1.19 cells was detected through the methylthiazolyldiphenyl-tetrazolium bromide (MTT) kit. Flow cytometry was used to detect the cell apoptosis. The change in protein beclin1 and P62 expression in hFOB1.19 cells was observed in Western blot. An ROS detection kit was used to detect the content of reactive oxygen species in hFOB1.19 cells. Results. Silica/OCP was a sphere with a particle size of 50 nm to 130 nm and had an OCP phase in electron projection microscopy and X-ray diffraction techniques. The results indicated that OCP successfully modified silica and the material was successfully prepared. An MTT kit and flow cytometry test showed that the cell viability of the cells treated with silica/OCP increased significantly ( P < 0.05 ), and the intracellular apoptosis phenomenon was significantly decreased ( P < 0.05 ) compared to the control group. Moreover, the inhibition of cell viability and promotion of apoptosis caused by the autophagy inhibitor 3-MA can be rescued. Western blotting demonstrated that the protein level of beclin1 in osteoblasts reached the highest after six hours of treatment with silica/OCP, and the protein level of p62, the substrate protein of autophagy, reached the lowest. At the same time, treatment of cells with the autophagy inhibitor 3-MA and silica/OCP+3-MA found that the protein levels of beclin1 and p62 in the silica/OCP+3-MA group were adjusted back compared to the 3-MA group. After adding the autophagy inhibitor, the reactive oxygen content in the cell was significantly increased ( P < 0.05 ) in the silica/OCP group. In the presence of intracellular reactive oxygen inhibitors catalase and silica/OCP, the cell viability of osteoblasts was significantly lower than that of the silica/OCP group but significantly higher than that of the silica/OCP+3-MA group. The apoptosis level of the silica/OCP+catalase group was also significantly lower than that of the silica/OCP+3-MA group ( P < 0.05 ) but was significantly higher than that of the silica/OCP group ( P < 0.05 ). Conclusion. Silica/OCP nanoparticles can upregulate the level of autophagy in osteoblasts and promote the proliferation of osteoblasts.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yaowen Wang ◽  
Jingfang Zhang ◽  
Feipeng Wang ◽  
Wenping Chen ◽  
Jie Ma ◽  
...  

Background. Previous studies have shown that alkannin has anticancer, anti-inflammatory, and antibacterial effects. However, the effect of alkannin in the development of ovarian cancer (OC) remains unknown. Therefore, this study aims to elucidate the function of alkannin in OC progression. Methods. RT-qPCR and western blot analysis were used to measure mRNA and protein expression. Cell viability and metastasis were detected by the CCK-8 assay, flow cytometry analysis, and transwell assay. Results. Alkannin had no cytotoxicity toward normal ovarian cells, but alkannin can inhibit cell proliferation and induce apoptosis in OC cells. In addition, alkannin inhibited cell migration and invasion and blocked EMT in OC. Besides, upregulation of miR-4461 was found in OC tissues and cells, which was regulated by alkannin. More importantly, miR-4461 can inverse the effects of alkannin on cell viability and metastasis in OC cells. Conclusion. Alkannin restrains cell viability, metastasis, and EMT in OC by downregulating miR-4461 expression.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
H. Lin ◽  
M. V. Stankov ◽  
J. Hegermann ◽  
R. Budida ◽  
D. Panayotova-Dimitrova ◽  
...  

ABSTRACT Nucleoside reverse transcriptase inhibitors (NRTI), such as zidovudine (AZT), are constituents of HIV-1 therapy and are used for the prevention of mother-to-child transmission. Prolonged thymidine analogue exposure has been associated with mitochondrial toxicities to heart, liver, and skeletal muscle. We hypothesized that the thymidine analogue AZT might interfere with autophagy in myocytes, a lysosomal degradation pathway implicated in the regulation of mitochondrial recycling, cell survival, and the pathogenesis of myodegenerative diseases. The impact of AZT and lamivudine (3TC) on C2C12 myocyte autophagy was studied using various methods based on LC3-green fluorescent protein overexpression or LC3 staining in combination with Western blotting, flow cytometry, and confocal and electron microscopy. Lysosomal and mitochondrial functions were studied using appropriate staining for lysosomal mass, acidity, cathepsin activity, as well as mitochondrial mass and membrane potential in combination with flow cytometry and confocal microscopy. AZT, but not 3TC, exerted a significant dose- and time-dependent inhibitory effect on late stages of autophagosome maturation, which was reversible upon mTOR inhibition. Inhibition of late autophagy at therapeutic drug concentrations led to dysfunctional mitochondrial accumulation with membrane hyperpolarization and increased reactive oxygen species (ROS) generation and, ultimately, compromised cell viability. These AZT effects could be readily replicated by pharmacological and genetic inhibition of myocyte autophagy and, most importantly, could be rescued by pharmacological stimulation of autophagolysosomal biogenesis. Our data suggest that the thymidine analogue AZT inhibits autophagy in myocytes, which in turn leads to the accumulation of dysfunctional mitochondria with increased ROS generation and compromised cell viability. This novel mechanism could contribute to our understanding of the long-term side effects of antiviral agents.


1996 ◽  
Vol 40 (3) ◽  
pp. 541-545 ◽  
Author(s):  
Y Wang ◽  
A Casadevall

Cryptococcus neoformans is an opportunistic fungal pathogen which becomes heavily melanized in the presence of phenolic substrates such as L-dopa. Various drugs are known to bind to melanin with high affinity, including the antipsychotic agent trifluoperazine and the antimalarial agent chloroquine. We hypothesized that drugs which bind melanin may have different toxicities for melanized and nonmelanized C. neoformans cells. The effects of trifluoperazine and chloroquine or C. neoformans were determined by measuring cell viability after exposure to these drugs. Cell viability was measured by CFU determination and flow cytometry with propidium iodide staining. Melanized cells were more susceptible than nonmelanized cells to the fungicidal effects of trifluoperazine. Chloroquine had no fungicidal effect on either melanized or nonmelanized C. neoformans under the conditions studied. Flow cytometry of trifluoperazine-treated C. neoformans cells stained with the mitochondrial stain dihydrorhodamine 123 revealed fluorescence changes consistent with mitochondrial damage. Our results indicate that melanized and nonmelanized C. neoformans cells can differ in susceptibility to certain drugs and suggest that strategies which target melanin may be productive for antifungal-drug discovery.


Chemotherapy ◽  
2018 ◽  
Vol 63 (6) ◽  
pp. 308-314 ◽  
Author(s):  
Shenglan Gong ◽  
Mengqiao Guo ◽  
Gusheng Tang ◽  
Jianmin Yang ◽  
Huiying Qiu

Background: The translocation t(12; 22) (p13;q12) is a recurrent but infrequent chromosome abnormality in human myeloid malignancies. To date, the role of TEL-MN1 fusion in leukemogenic process and drug resistance is still largely unknown. Methods: In the present study, the TEL-MN1 fusion was transfected into HL-60 cells to upregulate TEL-MN1 expression via a retroviral vector. MTT assay was employed to examine cell viability and flow cytometry was performed to evaluate cell apoptosis. Idarubicin was used to treat HL-60 cells for estimating the effect of TEL-MN1 fusion on the chemotherapy resistance. Results: The results showed that overexpression of TEL-MN1 in HL-60 cells could promote cell proliferation, suggesting that TEL-MN1 may be involved in the leukemogenesis process. HL-60 cells treated with idarubicin showed a weakened cell viability, whereas TEL-MN1 overexpression attenuated the idarubicin-induced inhibition of cell viability and acceleration of cell apoptosis of HL-60 cells. Conclusion: Taken together, our results indicated that TEL-MN1 fusion is an oncogene involved in the leukemogenesis process and TEL-MN1 overexpression enhanced resistance of HL-60 cells to idarubicin, which may provide a useful tool for studying the mechanism of leukemogenesis and drug resistance.


2019 ◽  
Vol 103 (20) ◽  
pp. 8619-8629 ◽  
Author(s):  
Christian Opitz ◽  
Grit Schade ◽  
Silvan Kaufmann ◽  
Marco Di Berardino ◽  
Marcel Ottiger ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Kirsten Benkendorff ◽  
Cassandra M. McIver ◽  
Catherine A. Abbott

Marine molluscs from the family Muricidae are the source of a homeopathic remedyMurex, which is used to treat a range of conditions, including cancer. The aim of this study was to evaluate thein vitrobioactivity of egg mass extracts of the Australian muricidDicathais orbita, in comparison to theMurexremedy, against human carcinoma and lymphoma cells. Liquid chromatography coupled with mass spectrometry (LC-MS) was used to characterize the chemical composition of the extracts and homeopathic remedy, focusing on biologically active brominated indoles. The MTS (tetrazolium salt) colorimetric assay was used to determine effects on cell viability, while necrosis and apoptosis induction were investigated using flow cytometry (propidium iodide and Annexin-V staining, resp.). Cells were treated with varying concentrations (1–0.01 mg/mL) of crude and semi-purified extracts or preparations (dilute 1 M and concentrated 4 mg/mL) from theMurexremedy (4 h). TheMurexremedy showed little biological activity against the majority of cell lines tested. In contrast, theD. orbitaegg extracts significantly decreased cell viability in the majority of carcinoma cell lines. Flow cytometry revealed these extracts induce necrosis in HT29 colorectal cancer cells, whereas apoptosis was induced in Jurkat cells. These findings highlight the biomedical potential of Muricidae extracts in the development of a natural therapy for the treatment of neoplastic tumors and lymphomas.


Sign in / Sign up

Export Citation Format

Share Document