scholarly journals Microbial biosynthesis of lactate esters

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jong-Won Lee ◽  
Cong T. Trinh

Abstract Background Green organic solvents such as lactate esters have broad industrial applications and favorable environmental profiles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help benefit the environment. However, to date, the direct microbial biosynthesis of lactate esters from fermentable sugars has not yet been demonstrated. Results In this study, we present a microbial conversion platform for direct biosynthesis of lactate esters from fermentable sugars. First, we designed a pyruvate-to-lactate ester module, consisting of a lactate dehydrogenase (ldhA) to convert pyruvate to lactate, a propionate CoA-transferase (pct) to convert lactate to lactyl-CoA, and an alcohol acyltransferase (AAT) to condense lactyl-CoA and alcohol(s) to make lactate ester(s). By generating a library of five pyruvate-to-lactate ester modules with divergent AATs, we screened for the best module(s) capable of producing a wide range of linear, branched, and aromatic lactate esters with an external alcohol supply. By co-introducing a pyruvate-to-lactate ester module and an alcohol (i.e., ethanol, isobutanol) module into a modular Escherichia coli (chassis) cell, we demonstrated for the first time the microbial biosynthesis of ethyl and isobutyl lactate esters directly from glucose. In an attempt to enhance ethyl lactate production as a proof-of-study, we re-modularized the pathway into (1) the upstream module to generate the ethanol and lactate precursors and (2) the downstream module to generate lactyl-CoA and condense it with ethanol to produce the target ethyl lactate. By manipulating the metabolic fluxes of the upstream and downstream modules through plasmid copy numbers, promoters, ribosome binding sites, and environmental perturbation, we were able to probe and alleviate the metabolic bottlenecks by improving ethyl lactate production by 4.96-fold. We found that AAT is the most rate-limiting step in biosynthesis of lactate esters likely due to its low activity and specificity toward the non-natural substrate lactyl-CoA and alcohols. Conclusions We have successfully established the biosynthesis pathway of lactate esters from fermentable sugars and demonstrated for the first time the direct fermentative production of lactate esters from glucose using an E. coli modular cell. This study defines a cornerstone for the microbial production of lactate esters as green solvents from renewable resources with novel industrial applications.

2018 ◽  
Author(s):  
Jong-Won Lee ◽  
Cong T. Trinh

ABSTRACTBackgroundGreen organic solvents such as lactate esters have broad industrial applications and favorable environmental profiles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help benefit the environment. However, to date, the direct microbial biosynthesis of lactate esters from fermentable sugars has not yet been demonstrated.ResultsIn this study, we present a microbial conversion platform for direct biosynthesis of lactate esters from fermentable sugars. First, we designed a pyruvate-to-lactate ester module, consisting of a lactate dehydrogenase (ldhA) to convert pyruvate to lactate, a propionate CoA-transferase (pct) to convert lactate to lactyl-CoA, and an alcohol acyltransferase (AAT) to condense lactyl-CoA and alcohol(s) to make lactate ester(s). By generating a library of five pyruvate-to-lactate ester modules with divergent AATs, we screened for the best module(s) capable of producing a wide range of linear, branched, and aromatic lactate esters with an external alcohol supply. By co-introducing a pyruvate-to-lactate ester module and an alcohol (i.e., ethanol, isobutanol) module into a modularEscherichia coli(chassis) cell, we demonstrated for the first time the microbial biosynthesis of ethyl and isobutyl lactate esters directly from glucose. In an attempt to enhance ethyl lactate production as a proof-of-study, we re-modularized the pathway into 1) the upstream module to generate the ethanol and lactate precursors and 2) the downstream module to generate lactyl-CoA and condense it with ethanol to produce the target ethyl lactate. By manipulating the metabolic fluxes of the upstream and downstream modules through plasmid copy numbers, promoters, ribosome binding sites, and environmental perturbation, we were able to probe and alleviate the metabolic bottlenecks by improving ethyl lactate production by 4.96-fold. We found that AAT is the most rate limiting step in biosynthesis of lactate esters likely due to its low activity and specificity towards the non-natural substrate lactyl-CoA and alcohols.ConclusionsWe have successfully established the biosynthesis pathway of lactate esters from fermentable sugars and demonstrated for the first time the direct fermentative production of lactate esters from glucose using anE. colimodular cell. This study defines a cornerstone for the microbial production of lactate esters as green solvents from renewable resources with novel industrial applications.


2019 ◽  
Vol 21 (19) ◽  
pp. 5427-5436 ◽  
Author(s):  
Veronika Pilařová ◽  
Said Al Hamimi ◽  
Larissa P. Cunico ◽  
Lucie Nováková ◽  
Charlotta Turner

Fast extractions were achieved by the use of green solvents containing compressed carbon dioxide as a viscosity-lowering entrainer.


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


2017 ◽  
Author(s):  
Jose A. Pomposo

Understanding the miscibility behavior of ionic liquid (IL) / monomer, IL / polymer and IL / nanoparticle mixtures is critical for the use of ILs as green solvents in polymerization processes, and to rationalize recent observations concerning the superior solubility of some proteins in ILs when compared to standard solvents. In this work, the most relevant results obtained in terms of a three-component Flory-Huggins theory concerning the “Extra Solvent Power, ESP” of ILs when compared to traditional non-ionic solvents for monomeric solutes (case I), linear polymers (case II) and globular nanoparticles (case III) are presented. Moreover, useful ESP maps are drawn for the first time for IL mixtures corresponding to case I, II and III. Finally, a potential pathway to improve the miscibility of non-ionic polymers in ILs is also proposed.


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


2020 ◽  
pp. 63-72
Author(s):  
Yu. Olefir ◽  
E. Sakanyan ◽  
I. Osipova ◽  
V. Dobrynin ◽  
M. Smirnova ◽  
...  

The entry of a wide range of biotechnological products into the pharmaceutical market calls for rein-forcement of the quality, efficacy and safety standards at the state level. The following general monographs have been elaborated for the first time to be included into the State Pharmacopoeia of the Russian Federation, XIV edition: "Viral safety" and "Reduction of the risk of transmitting animal spongiform encephalopathy via medicinal products". These general monographs were elaborated taking into account the requirements of foreign pharmacopoeias and the WHO recommendations. The present paper summarises the key aspects of the monographs.


Author(s):  
Petros Bouras-Vallianatos

Byzantine medicine is still a little-known and misrepresented field not only in the wider arena of debates on medieval medicine but also among Byzantinists. Byzantine medical literature is often viewed as ‘stagnant’ and mainly preserving ancient ideas; and our knowledge of it continues to be based to a great extent on the comments of earlier authorities, which are often repeated uncritically. This book presents the first comprehensive examination of the medical corpus of, arguably, the most important late Byzantine physician John Zacharias Aktouarios (c.1275–c.1330). The main thesis is that John’s medical works show an astonishing degree of openness to knowledge from outside Byzantium combined with a significant degree of originality, in particular, in the fields of uroscopy, pharmacology, and human physiology. The analysis of John’s edited (On Urines and On Psychic Pneuma) and unedited (Medical Epitome) works is supported for the first time by the consultation of a large number of manuscripts. The study is also informed by evidence from a wide range of medical sources, including previously unpublished ones, and texts from other genres, such as epistolography and merchants’ accounts. The contextualization of John’s works sheds new light on the development of Byzantine medical thought and practice, and enhances our understanding of the late Byzantine social and intellectual landscape. Finally, John’s medical observations are also examined in the light of examples from the medieval Latin and Islamic worlds, placing his medical theories in the wider Mediterranean milieu and highlighting the cultural exchange between Byzantium and its neighbours.


Author(s):  
Noel Malcolm

This book of essays covers a wide range of topics in the history of Albania and Kosovo. Many of the essays illuminate connections between the Albanian lands and external powers and interests, whether political, military, diplomatic or religious. Such topics include the Habsburg invasion of Kosovo in 1689, the manoeuvrings of Britain and France towards the Albanian lands during the Napoleonic Wars, the British interest in those lands in the late nineteenth century, and the Balkan War of 1912. On the religious side, essays examine ‘crypto-Christianity’ in Kosovo during the Ottoman period, the stories of conversion to Islam revealed by Inquisition records, the first theological treatise written in Albanian (1685), and the work of the ‘Apostolic Delegate’ who reformed the Catholic Church in early twentieth-century Albania. Some essays bring to life ordinary individuals hitherto unknown to history: women hauled before the Inquisition, for example, or the author of the first Albanian autobiography. The longest essay, on Ali Pasha, tells for the first time the full story of the role he played in the international politics of the Napoleonic Wars. Some of these studies have been printed before (several in hard-to-find publications, and one only in Albanian), but the greater part of this book appears here for the first time. This is not only a contribution to Albanian and Balkan history it also engages with many broader issues, including religious conversion, methods of enslavement within the Ottoman Empire, and the nature of modern myth-making about national identity.


The recycling and reuse of materials and objects were extensive in the past, but have rarely been embedded into models of the economy; even more rarely has any attempt been made to assess the scale of these practices. Recent developments, including the use of large datasets, computational modelling, and high-resolution analytical chemistry, are increasingly offering the means to reconstruct recycling and reuse, and even to approach the thorny matter of quantification. Growing scholarly interest in the topic has also led to an increasing recognition of these practices from those employing more traditional methodological approaches, which are sometimes coupled with innovative archaeological theory. Thanks to these efforts, it has been possible for the first time in this volume to draw together archaeological case studies on the recycling and reuse of a wide range of materials, from papyri and textiles, to amphorae, metals and glass, building materials and statuary. Recycling and reuse occur at a range of site types, and often in contexts which cross-cut material categories, or move from one object category to another. The volume focuses principally on the Roman Imperial and late antique world, over a broad geographical span ranging from Britain to North Africa and the East Mediterranean. Last, but not least, the volume is unique in focusing upon these activities as a part of the status quo, and not just as a response to crisis.


1998 ◽  
Vol 162 ◽  
pp. 100-105
Author(s):  
Andrew J. Norton ◽  
Mark H. Jones

The Open University is the UK's foremost distance teaching university. For over twenty five years we have been presenting courses to students spanning a wide range of degree level and vocational subjects. Since we have no pre-requisites for entry, a major component of our course profile is a selection of foundation courses comprising one each in the Arts, Social Science, Mathematics, Technology and Science faculties. The Science Faculty's foundation course is currently undergoing a substantial revision. The new course, entitled “S103: Discovering Science”, will be presented to students for the first time in 1998.


Sign in / Sign up

Export Citation Format

Share Document