scholarly journals The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Riin Kont ◽  
Ville Pihlajaniemi ◽  
Anna S. Borisova ◽  
Nina Aro ◽  
Kaisa Marjamaa ◽  
...  

Abstract Background Enzyme-aided valorization of lignocellulose represents a green and sustainable alternative to the traditional chemical industry. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are important components of the state-of-the art enzyme cocktails for cellulose conversion. Yet, these monocopper enzymes are poorly characterized in terms of their kinetics, as exemplified by the growing evidence for that H2O2 may be a more efficient co-substrate for LPMOs than O2. LPMOs need external electron donors and one key question of relevance for bioprocess development is whether the required reducing power may be provided by the lignocellulosic substrate. Results Here, we show that the liquid fraction (LF) resulting from hydrothermal pretreatment of wheat straw supports LPMO activity on both chitin and cellulose. The initial, transient activity burst of the LPMO reaction was caused by the H2O2 present in the LF before addition of LPMO, while the steady-state rate of LPMO reaction was limited by the LPMO-independent production of H2O2 in the LF. H2O2 is an intermediate of LF oxidation as evidenced by a slow H2O2 accumulation in LF, despite high H2O2 production rates. This H2O2 scavenging ability of LF is important since high concentrations of H2O2 may lead to irreversible inactivation of LPMOs. Conclusions Our results support the growing understanding that fine-tuned control over the rates of H2O2 production and consumption in different, enzymatic and non-enzymatic reactions is essential for harnessing the full catalytic potential of LPMOs in lignocellulose valorization.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lukas Rieder ◽  
Katharina Ebner ◽  
Anton Glieder ◽  
Morten Sørlie

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. Results We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. Conclusion The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Leif J. Jönsson ◽  
Carlos Martín

Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1098
Author(s):  
Federica Calderaro ◽  
Loes E. Bevers ◽  
Marco A. van den Berg

Lytic polysaccharide monooxygenases (LPMOs) have sparked a lot of research regarding their fascinating mode-of-action. Particularly, their boosting effect on top of the well-known cellulolytic enzymes in lignocellulosic hydrolysis makes them industrially relevant targets. As more characteristics of LPMO and its key role have been elucidated, the need for fast and reliable methods to assess its activity have become clear. Several aspects such as its co-substrates, electron donors, inhibiting factors, and the inhomogeneity of lignocellulose had to be considered during experimental design and data interpretation, as they can impact and often hamper outcomes. This review provides an overview of the currently available methods to measure LPMO activity, including their potential and limitations, and it is illustrated with practical examples.


2021 ◽  
Author(s):  
Cristina Hernandez Rollan ◽  
Kristoffer Bach Falkenberg ◽  
Maja Rennig ◽  
Andreas Birk Bertelsen ◽  
Morten Norholm

E. coli is a gram-negative bacteria used mainly in academia and in some industrial scenarios, as a protein production workhorse. This is due to its ease of manipulation and the range of genetic tools available. This protocol describes how to express proteins in the periplasm E. coli with the strain BL21 (DE3) using a T7 expression system. Specifically, it describes a series of steps and tips to express "hard-to-express" proteins in E. coli, as for instance, LPMOs. The protocol is adapted from Hemsworth, G. R., Henrissat, B., Davies, G. J., and Walton, P. H. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol.10, 122–126. .


Author(s):  
Jayaprada Rao Chunduri ◽  
Hetwi R. Shah

Objective: phytochemical screening and antioxidant activity analyses of selected indoor plants and to evaluate commercial applications.Methods: Qualitative and quantitative phytochemical analyses of alcoholic and aquatic crude extracts of leaves of selected non-flowering indoor plants were assessed using standard protocols and later compared with FTIR analyses. Antioxidant and antibacterial activities of the extracts were studiedResults: Phytochemical analysis of polar solvent extractions of the four selected plants Pedilanthus tithymaloides, Cordyline terminalis, Tradescantia zebrine and Rhoeo discolou. Indicated the presence of tannins in all four varieties terpenoids in 3, flavonols, phytosterols and phenols in two plants, followed by alkaloids. The phytochemical analyses were supported by FTIR reports. Quantitative studies indicated variations in flavonol, tannin and phenols concentrations among the four species. High concentrations of Total flavonols (P. tithymaloides) and Tannins (C. terminalis) were observed. C. terminalis extract showed comparatively highest reducing power followed by R. discolour and P. tithymaloides extracts. Antibiotic Sensitivity Testing indicated P. tithymaloides showed a maximum zone of inhibition compared to R. discolor. C. terminalis plant leaf extract showed a faint zone of inhibition against E. fecalis while others couldnot. Intense colors of C. terminalis and T. zebrine plants could be used as a natural dye as well as pH indicator. Conclusion: The rich concentrations of the tannins from non-flowering indoor plants could be the future option of dyes and dyeing industry as natural colorants as well as pH indicators. These plants were rich sources of phytochemicals (phenols, flavonols, tannins, and phytosterols), with antioxidant and antibacterial activity.


2018 ◽  
Vol 46 (6) ◽  
pp. 1431-1447 ◽  
Author(s):  
Tobias Tandrup ◽  
Kristian E. H. Frandsen ◽  
Katja S. Johansen ◽  
Jean-Guy Berrin ◽  
Leila Lo Leggio

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


2021 ◽  
Author(s):  
Theruvothu Madathil Vandhana ◽  
Jean‐Lou Reyre ◽  
Dangudubiyyam Sushmaa ◽  
Jean‐Guy Berrin ◽  
Bastien Bissaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document