scholarly journals Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mercedes Fernández-Escobar ◽  
Rafael Calero-Bernal ◽  
Julio Benavides ◽  
Javier Regidor-Cerrillo ◽  
María Cristina Guerrero-Molina ◽  
...  

Abstract Background Toxoplasma gondii is a major cause of abortion in small ruminants and presents a zoonotic risk when undercooked meat containing cysts is consumed. The aim of the present study was to investigate the genetic diversity among the T. gondii strains circulating in ovine livestock in Spain. Methods Selected samples collected from abortion outbreaks due to toxoplasmosis (n = 31) and from chronically infected adult sheep at slaughterhouses (n = 50) in different Spanish regions were bioassayed in mice, aiming at parasite isolation. In addition, all original clinical samples and the resulting isolates were genotyped by multi-nested PCR-RFLP analysis of 11 molecular markers and by PCR-DNA sequencing of portions of the SAG3, GRA6 and GRA7 genes. Results As a result, 30 isolates were obtained from 9 Spanish regions: 10 isolates from abortion-derived samples and 20 isolates from adult myocardial tissues. Overall, 3 genotypes were found: ToxoDB#3 (type II PRU variant) in 90% (27/30) of isolates, ToxoDB#2 (clonal type III) in 6.7% (2/30), and ToxoDB#1 (clonal type II) in 3.3% (1/30). When T. gondii-positive tissue samples (n = 151) were directly subjected to RFLP genotyping, complete restriction profiles were obtained for 33% of samples, and up to 98% of the specimens belonged to the type II PRU variant. A foetal brain showed a clonal type II pattern, and four specimens showed unexpected type I alleles at the SAG3 marker, including two foetal brains that showed I + II alleles as co-infection events. Amplicons of SAG3, GRA6 and GRA7 obtained from isolates and clinical samples were subjected to sequencing, allowing us to confirm RFLP results and to detect different single-nucleotide polymorphisms. Conclusions The present study informed the existence of a predominant type II PRU variant genotype (ToxoDB#3) infecting domestic sheep in Spain, in both abortion cases and chronic infections in adults, coexisting with other clonal (ToxoDB#1 and ToxoDB#2), much less frequent genotypes, as well as polymorphic strains as revealed by clinical sample genotyping. The use of multilocus sequence typing aided in accurately estimating T. gondii intragenotype diversity.

2015 ◽  
Vol 6 ◽  
Author(s):  
Priscila S. Franco ◽  
Neide M. da Silva ◽  
Bellisa de Freitas Barbosa ◽  
Angelica de Oliveira Gomes ◽  
Francesca Ietta ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


Parasitology ◽  
2013 ◽  
Vol 140 (14) ◽  
pp. 1768-1776 ◽  
Author(s):  
A. BURRELLS ◽  
P. M. BARTLEY ◽  
I. A. ZIMMER ◽  
S. ROY ◽  
A. C. KITCHENER ◽  
...  

SUMMARYToxoplasma gondiiis a zoonotic pathogen defined by three main clonal lineages (types I, II, III), of which type II is most common in Europe. Very few data exist on the prevalence and genotypes ofT. gondiiin the UK. Wildlife can act as sentinel species forT. gondiigenotypes present in the environment, which may subsequently be transmitted to livestock and humans. DNA was extracted from tissue samples of wild British carnivores, including 99 ferrets, 83 red foxes, 70 polecats, 65 mink, 64 badgers and 9 stoats. Parasite DNA was detected using a nested ITS1 PCR specific forT. gondii, PCR positive samples were subsequently genotyped using five PCR–RFLP markers.Toxoplasma gondiiDNA was detected within all these mammal species and prevalence varied from 6·0 to 44·4% depending on the host. PCR–RFLP genotyping identified type II as the predominant lineage, but type III and type I alleles were also identified. No atypical or mixed genotypes were identified within these animals. This study demonstrates the presence of alleles for all three clonal lineages with potential for transmission to cats and livestock. This is the first DNA-based study ofT. gondiiprevalence and genotypes across a broad range of wild British carnivores.


Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 60 ◽  
Author(s):  
Stéphane Simon ◽  
Benoit de Thoisy ◽  
Aurélien Mercier ◽  
Mathieu Nacher ◽  
Magalie Demar

Background. Toxoplasma gondii is an obligate intracellular protozoan parasite of warm-blooded vertebrates. Most infections in immunocompetent patients are asymptomatic. However, since 2000s, strains with particular genetic profiles that differ from the known clonal type (type I, II, III), have been described. In French Guiana, these strains are highly pathogenic in immunocompetent patients. They have defined a new clinical entity called Amazonian Toxoplasmosis. The present study aims to further improve our knowledge on the pathogenicity of these Amazonian T. gondii strains in comparison with three reference strains using Swiss strain mice. With these data, we tried to establish a predictive virulence score to classify these strains, but also to correlate this virulence with the severity of the disease in infected patients. Results. All the virulence indicators revealed that the Amazonian strains isolated in French Guiana presented a high virulence profile, but lower than the highly virulent type I reference RH strain. The findings reveal differences in virulence between human and animal strains, but also between anthropized and wild strains. Conclusion. In addition to being a clinically relevant animal model of Amazonian Toxoplasmosis, this model could also provide a solid experimental basis for future studies aiming to investigate the underlying mechanisms of Amazonian Toxoplasmosis disease.


2019 ◽  
Vol 28 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Andrea Dellarupe ◽  
Bruno Fitte ◽  
Lais Pardini ◽  
Lucía María Campero ◽  
Mariana Bernstein ◽  
...  

Abstract Toxoplasma gondii and Neospora caninum are closely related coccidian parasites (phylum Apicomplexa). This is the first study from urban synanthropic rodent species that involved serological and molecular diagnosis of T. gondii and N. caninum infection, and genotyping of T. gondii in Argentina. A total of 127 rodent samples were trap captured: Mus musculus (n = 78), Rattus norvegicus (n = 26) and Rattus rattus (n = 23). Antibodies against T. gondii and N. caninum were detected by IFAT in 32.8% (40/122) and 0.8% (1/122) of rodent samples, respectively, demonstrating contact with these protozoans. Additionally, T. gondii DNA was detected in 3.3% (4/123) of rodent central nervous system samples and 2 samples were genotyped by multilocus nPCR-RFLP. Neospora caninum DNA was not detected by PCR. The 2 genotyped samples were type III allele for all markers except for SAG-1 (type I for Rat1Arg and type II/III for Rat2Arg) and were identified as #48 and #2 (likely) according to the allele combinations reported on Toxo DB (Toxo-DB). The results of the present study revealed a wide distribution of T. gondii and less for N. caninum, in synanthropic rats and mice in the studied area.


2007 ◽  
Vol 75 (12) ◽  
pp. 5788-5797 ◽  
Author(s):  
Chiang W. Lee ◽  
Woraporn Sukhumavasi ◽  
Eric Y. Denkers

ABSTRACT Chemokines play an important role in inflammation and infection due to their ability to recruit cells of innate and adaptive immunity. Here we examined mouse macrophage chemokine responses during intracellular infections with high- and low-virulence Toxoplasma gondii strains. The high-virulence type I strain RH induced a large panel of CC-type chemokines, whereas responses elicited by strains PTG (type II) and M7741 (type III) were much weaker. Strikingly, the T. gondii-induced chemokine response occurred independently of signaling through the Toll-like receptor adaptor MyD88. Instead, production of chemokines during infection was heavily dependent upon phosphoinositide-3-kinase signaling pathways. Because infection with type I strains such as RH results in an uncontrolled proinflammatory cytokine response, we hypothesize that this virulence phenotype is a consequence of early strong induction of chemokines by type I, but not type II or III, Toxoplasma strains.


2009 ◽  
Vol 8 (12) ◽  
pp. 1828-1836 ◽  
Author(s):  
Asis Khan ◽  
Michael S. Behnke ◽  
Ildiko R. Dunay ◽  
Michael W. White ◽  
L. David Sibley

ABSTRACT Toxoplasma gondii has an unusual population structure consisting of three clonal lineages that predominate in North America and Europe. This simple pattern has encouraged the use of only a few laboratory isolates that are representative of each lineage. Principle among these is the type I RH strain, originally isolated from a child with encephalitis some 70 years ago. Comparison of different passages of the RH strain that have been propagated differently over the intervening time period revealed that the commonly used clonal line called RH-ERP was not representative of natural isolates of the type I lineage. Notably, RH-ERP formed much larger plaques than other type 1 strains, including a separate, earlier derived isolate of the RH strain. The RH-ERP variant also showed enhanced extracellular survival, faster growth, and decreased differentiation compared to the prototype type I strain GT1. Comparison of gene expression differences in the RH-ERP line revealed that several ABC transporters were upregulated, which may provide a growth advantage in vitro. These findings illustrate that dramatic phenotypic changes can arise in laboratory strains, emphasizing the need for comparison with recent clinical isolates.


2002 ◽  
Vol 195 (12) ◽  
pp. 1625-1633 ◽  
Author(s):  
Antonio Barragan ◽  
L. David Sibley

After oral ingestion, Toxoplasma gondii crosses the intestinal epithelium, disseminates into the deep tissues, and traverses biological barriers such as the placenta and the blood-brain barrier to reach sites where it causes severe pathology. To examine the cellular basis of these processes, migration of T. gondii was studied in vitro using polarized host cell monolayers and extracellular matrix. Transmigration required active parasite motility and the highly virulent type I strains consistently exhibited a superior migratory capacity than the nonvirulent type II and type III strains. Type I strain parasites also demonstrated a greater capacity for transmigration across mouse intestine ex vivo, and directly penetrated into the lamina propria and vascular endothelium. A subpopulation of virulent type I parasites exhibited a long distance migration (LDM) phenotype in vitro, that was not expressed by nonvirulent type II and type III strains. Cloning of parasites expressing the LDM phenotype resulted in substantial increase of migratory capacity in vitro and in vivo. The potential to up-regulate migratory capacity in T. gondii likely plays an important role in establishing new infections and in dissemination upon reactivation of chronic infections.


2009 ◽  
Vol 206 (12) ◽  
pp. 2747-2760 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Daron M. Standley ◽  
Seiji Takashima ◽  
Hiroyuki Saiga ◽  
Megumi Okuyama ◽  
...  

Infection by Toxoplasma gondii down-regulates the host innate immune responses, such as proinflammatory cytokine production, in a Stat3-dependent manner. A forward genetic approach recently demonstrated that the type II strain fails to suppress immune responses because of a potential defect in a highly polymorphic parasite-derived kinase, ROP16. We generated ROP16-deficient type I parasites by reverse genetics and found a severe defect in parasite-induced Stat3 activation, culminating in enhanced production of interleukin (IL) 6 and IL-12 p40 in the infected macrophages. Furthermore, overexpression of ROP16 but not ROP18 in mammalian cells resulted in Stat3 phosphorylation and strong activation of Stat3-dependent promoters. In addition, kinase-inactive ROP16 failed to activate Stat3. Comparison of type I and type II ROP16 revealed that a single amino acid substitution in the kinase domain determined the strain difference in terms of Stat3 activation. Moreover, ROP16 bound Stat3 and directly induced phosphorylation of this transcription factor. These results formally establish an essential and direct requirement of ROP16 in parasite-induced Stat3 activation and the significance of a single amino acid replacement in the function of type II ROP16.


Sign in / Sign up

Export Citation Format

Share Document