scholarly journals Modelling the impact of climate change on the distribution and abundance of tsetse in Northern Zimbabwe

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Joshua Longbottom ◽  
Cyril Caminade ◽  
Harry S. Gibson ◽  
Daniel J. Weiss ◽  
Steve Torr ◽  
...  

Abstract Background Climate change is predicted to impact the transmission dynamics of vector-borne diseases. Tsetse flies (Glossina) transmit species of Trypanosoma that cause human and animal African trypanosomiasis. A previous modelling study showed that temperature increases between 1990 and 2017 can explain the observed decline in abundance of tsetse at a single site in the Mana Pools National Park of Zimbabwe. Here, we apply a mechanistic model of tsetse population dynamics to predict how increases in temperature may have changed the distribution and relative abundance of Glossina pallidipes across northern Zimbabwe. Methods Local weather station temperature measurements were previously used to fit the mechanistic model to longitudinal G. pallidipes catch data. To extend the use of the model, we converted MODIS land surface temperature to air temperature, compared the converted temperatures with available weather station data to confirm they aligned, and then re-fitted the mechanistic model using G. pallidipes catch data and air temperature estimates. We projected this fitted model across northern Zimbabwe, using simulations at a 1 km × 1 km spatial resolution, between 2000 to 2016. Results We produced estimates of relative changes in G. pallidipes mortality, larviposition, emergence rates and abundance, for northern Zimbabwe. Our model predicts decreasing tsetse populations within low elevation areas in response to increasing temperature trends during 2000–2016. Conversely, we show that high elevation areas (> 1000 m above sea level), previously considered too cold to sustain tsetse, may now be climatically suitable. Conclusions To our knowledge, the results of this research represent the first regional-scale assessment of temperature related tsetse population dynamics, and the first high spatial-resolution estimates of this metric for northern Zimbabwe. Our results suggest that tsetse abundance may have declined across much of the Zambezi Valley in response to changing climatic conditions during the study period. Future research including empirical studies is planned to improve model accuracy and validate predictions for other field sites in Zimbabwe.

2020 ◽  
Author(s):  
Joshua Longbottom ◽  
Cyril Caminade ◽  
Harry S. Gibson ◽  
Daniel J. Weiss ◽  
Steve Torr ◽  
...  

AbstractBackgroundClimate change is predicted to impact the transmission dynamics of vector-borne diseases. Tsetse flies (Glossina) transmit species of Trypanosoma that cause human and animal African trypanosomiasis. A previous modelling study showed that temperature increases between 1990 and 2017 can explain the observed decline in abundance of tsetse at a single site in the Mana Pools National Park of Zimbabwe. Here, we apply a mechanistic model of tsetse population dynamics to predict how increases in temperature may have changed the distribution and relative abundance of Glossina pallidipes across northern Zimbabwe.MethodsLocal weather station temperature measurements were previously used to fit the mechanistic model to longitudinal G. pallidipes catch data. To extend the use of the model, we converted MODIS land surface temperature to air temperature, compared the converted temperatures with available weather station data to confirm they aligned, and then re-fitted the mechanistic model using G. pallidipes catch data and air temperature estimates. We projected this fitted model across northern Zimbabwe, using simulations at a 1 km × 1 km spatial resolution, between 2000 to 2016.ResultsWe produce estimates of relative changes in G. pallidipes mortality, larviposition, emergence rates and abundance, for northern Zimbabwe. Our model predicts decreasing tsetse populations within low elevation areas in response to increasing temperature trends during 2000-2016. Conversely, we show that high elevation areas (>1000 M.A.S.L), previously considered too cold to sustain tsetse, may now be climatically suitable.ConclusionsThe results of this research represent the first regional-scale assessment of temperature related tsetse population dynamics, and the first high spatial-resolution estimates of this metric for northern Zimbabwe. Our results suggest that tsetse abundance may have declined across much of the Zambezi valley in response to changing climatic conditions during the study period. Future research including empirical studies is planned to improve model accuracy and validate predictions for other field sites in Zimbabwe.


2008 ◽  
Vol 5 (1) ◽  
pp. 93-96 ◽  
Author(s):  
Elsje Kleynhans ◽  
John S Terblanche

The water balance of tsetse flies (Diptera: Glossinidae) has significant implications for understanding biogeography and climate change responses in these African disease vectors. Although moisture is important for tsetse population dynamics, evolutionary responses of Glossina water balance to climate have been relatively poorly explored and earlier studies may have been confounded by several factors. Here, using a physiological and GIS climate database, we investigate potential interspecific relationships between traits of water balance and climate. We do so in conventional and phylogenetically independent approaches for both adults and pupae. Results showed that water loss rates (WLR) were significantly positively related to precipitation in pupae even after phylogenetic adjustment. Adults showed no physiology–climate correlations. Ancestral trait reconstruction suggests that a reduction in WLR and increased size probably evolved from an intermediate ancestral state and may have facilitated survival in xeric environments. The results of this study therefore suggest an important role for water balance physiology of pupae in determining interspecific variation and lend support to conclusions reached by early studies of tsetse physiology.


2021 ◽  
Author(s):  
Ignacio Martin Santos ◽  
Mathew Herrnegger ◽  
Hubert Holzmann

<p>In the last two decades, different climate downscaling initiatives provided climate scenarios for Europe. The most recent initiative, CORDEX, provides Regional Climate Model (RCM) data for Europe with a spatial resolution of 12.5 km, while the previous initiative, ENSEMBLES, had a spatial resolution of 25 km. They are based on different emission scenarios, Representative Concentration Pathways (RCPs) and Special Report on Emission Scenarios (SRES) respectively.</p><p>A study carried out by Stanzel et al. (2018) explored the hydrological impact and discharge projections for the Danube basin upstream of Vienna when using either CORDEX and ENSEMBLES data. This basin covers an area of 101.810<sup></sup>km<sup>2</sup> with a mean annual discharge of 1923 m<sup>3</sup>/s at the basin outlet. The basin is dominated by the Alps, large gradients and is characterized by high annual precipitations sums which provides valuable water resources available along the basin. Hydropower therefore plays an important role and accounts for more than half of the installed power generating capacity for this area. The estimation of hydropower generation under climate change is an important task for planning the future electricity supply, also considering the on-going EU efforts and the “Green Deal” initiative.</p><p>Taking as input the results from Stanzel et al. (2018), we use transfer functions derived from historical discharge and hydropower generation data, to estimate potential changes for the future. The impact of climate change projections of ENSEMBLE and CORDEX in respect to hydropower generation for each basin within the study area is determined. In addition, an assessment of the impact on basins dominated by runoff river plants versus basins dominated by storage plants is considered.</p><p>The good correlation between discharge and hydropower generation found in the historical data suggests that discharge projection characteristics directly affect the future expected hydropower generation. Large uncertainties exist and stem from the ensembles of climate runs, but also from the potential operation modes of the (storage) hydropower plants in the future.</p><p> </p><p> </p><p>References:</p><p>Stanzel, P., Kling, H., 2018. From ENSEMBLES to CORDEX: Evolving climate change projections for Upper Danube River flow. J. Hydrol. 563, 987–999. https://doi.org/10.1016/j.jhydrol.2018.06.057</p><p> </p>


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Liu ◽  
Fan Chen ◽  
Quansheng Ge ◽  
Yunyun Li

The purpose of this work is to present phenology as a valid indicator and methodology for monitoring and assessing the impact of climate change on plant-based tourist activities. Fruit-picking has become a popular rural tourism activity worldwide. However, fruit maturity dates (FMD) have been affected by climate change (CC), which has in turn profoundly affected fruit-picking tourism activities (FPTA). In this paper, phenological data on the FMD for 45 types of plants in 1980–2012, dates for more than 200 fruit-picking festivals, and data on monthly average air temperature in 1980–2013 were used to assess the impact of CC on FPTA by wavelet and correlation analyses. The findings indicated that the study area had been significantly affected by CC. Prevailing temperatures at one or three months prior have a decisive influence on FMD. Among the 11 plants directly related to FPTA, the FMD of four were significantly advanced, while 6-7 were significantly delayed owning to increased temperature. Of the 11 FPTA, only two had realized the impact of CC and had adjusted festival opening dates based on dynamic changes. However, a considerable number of festival activities remained fixed or scheduled on the weekends.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Leona Lokys ◽  
Jürgen Junk ◽  
Andreas Krein

Projected climate change will cause increasing air temperatures affecting human thermal comfort. In the highly populated areas of Western-Central Europe a large population will be exposed to these changes. In particular Luxembourg—with its dense population and the large cross-border commuter flows—is vulnerable to changing thermal stress. Based on climate change projections we assessed the impact of climate change on human thermal comfort over the next century using two common human-biometeorological indices, the Physiological Equivalent Temperature and the Universal Thermal Climate Index. To account for uncertainties, we used a multimodel ensemble of 12 transient simulations (1971–2098) with a spatial resolution of 25 km. In addition, the regional differences were analysed by a single regional climate model run with a spatial resolution of 1.3 km. For the future, trends in air temperature, vapour pressure, and both human-biometeorological indices could be determined. Cold stress levels will decrease significantly in the near future up to 2050, while the increase in heat stress turns statistically significant in the far future up to 2100. This results in a temporarily reduced overall thermal stress level but further increasing air temperatures will shift the thermal comfort towards heat stress.


2021 ◽  
Vol 325 ◽  
pp. 08010
Author(s):  
Gita Ivana Suci Lestari Faski ◽  
Ignasius Loyola Setyawan Purnama

Global climate change that occurred in this century can affect the pattern of rain and increase in temperature on earth. This study aims to determine and analyze the increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu watershed. For this reason, the regional rainfall is calculated using the Thiessen Polygon, the mean air temperature of the watershed based on the median elevation, potential evapotranspiration using the Thornthwaite Method and actual evapotranspiration using the basis of the difference in rainfall to potential evapotranspiration. The results showed that every year there was an increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu Watershed. In the 2009-2013 period, the average annual rainfall of 3,581 mm increased to 3,641 mm in the 2014-2018 period. For air temperature, the average monthly air temperature in the Bengkulu Watershed for the 2009-2013 period was 25.8°C, while the air temperature in the 2014-2018 period was 26.1°C. This means that in a period of 5 years there is an increase in temperature of 0.3°C. Furthermore, due to the increase in air temperature, there was an increase in the average monthly potential evapotranspiration from the 2009-2013 period to the 2014-2018 period, namely from 1,493 mm to 1,537 mm, while for actual evapotranspiration there was an increase from 1,486 mm to 1,518 mm.


2019 ◽  
Vol 16 (6) ◽  
pp. 57-66
Author(s):  
V. V. Zholudeva

The purpose of this study is to analyze current global and regional climate changes, as well as a statistical assessment of the factors that cause climate change, on the one hand, and an assessment of the impact of climate parameters on the economy, agriculture and demographic processes using the example of the Yaroslavl region, on the other hand. The study was conducted on the example of the Yaroslavl region and covers the period from 1922 to the present. First of all, the article analyzes the regulatory documents on ecology and climate change. The insufficient attention of federal and local authorities to solving the above problems, the lack of regional strategies to prevent climate change and reduce its negative consequences, which leads to the increased socio-economic risks, is noted. In order to identify factors causing climate change, a correlation and regression analysis was performed. Regression models of the dependence of crop yields on the average annual air temperature and the average annual precipitation were constructed. The statistical base of the study was compiled by the data of the Federal State Statistics Service and the territorial body of the Federal State Statistics Service for the Yaroslavl Region, as well as GISMETEO data. Processing of the research results was carried out in Microsoft Excel and SPSS.During the study, it was found that in the Yaroslavl region there is an increase in average annual and average monthly air temperatures, as well as a slight increase in precipitation, which mainly occurs due to an increase in rainfall in spring and early summer.The anthropogenic factors that cause climate change, namely the burning of fossil fuels, an increase in industrial production, an increase in the number of vehicles, as well as a change in land use and deforestation, are identified and statistically substantiated.As a result of the study, it was found that changes in climatic parameters have an impact on the economy, agriculture and demographic processes, namely: – climate change has a positive effect on agricultural production. According to studies, an increase in average air temperature is a positive factor for the agricultural sector of the Yaroslavl region, as crop yields will increase with increasing air temperature. These trends need to be considered when choosing certain varieties of crops and selecting fertilizers. Increasing the level of management and the transition to more modern technologies will have a greater effect. The efficiency and productivity of agriculture, as well as the food security of the region, will depend on these decisions; – it was found that hydro meteorological factors have a negligible effect on the growth rate of gross regional product and food production; – a statistical study showed that in the Yaroslavl region the effects of climate change on demographic processes and human health are currently insignificant.The findings can be used to develop mechanisms for adaptation to climate change and can serve as a basis for further research in the field of studying the impact of climate change on socio-economic and demographic processes in the Yaroslavl region.


2021 ◽  
Vol 01 (01) ◽  
pp. 20-24
Author(s):  
Meliboy Normatovich Kamolov ◽  
◽  
Sunnatillo Ibragimov ◽  

This article discusses the impact of climate and its components on environmental landscapes in the Mirzachul natural region. Due to this, in December and January the air temperature decreased to -340S (Mirzachul), -320S (Nurata, Jizzakh), -290 C (Forish). However, the average temperature in January is not lower than -0.10S (Forish), -0.60S (Jizzakh), -1.60S (Nurota).


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 637 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Christos Giannakopoulos ◽  
Dimitra Founda

This is the first study to look at future temporal urban heath island (UHI) trends of Athens (Greece) under different UHI intensity regimes. Historical changes in the Athens UHI, spanning 1971–2016, were assessed by contrasting two air temperature records from stable meteorological stations in contrasting urban and rural settings. Subsequently, we used a five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) to simulate air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) were implanted in the simulations after 2005 covering the period 2006–2100. Two 20-year historical reference periods (1976–1995 and 1996–2015) were selected with contrasting UHI regimes; the second period had a stronger intensity. The daily maximum and minimum air temperature data (Tmax and Tmin) for the two reference periods were perturbed to two future periods, 2046–2065 and 2076–2095, under the three RCPs, by applying the empirical quantile mapping (eqm) bias-adjusting method. This novel approach allows us to assess future temperature developments in Athens under two UHI intensity regimes that are mainly forced by differences in air pollution and heat input. We found that the future frequency of days with Tmax > 37 °C in Athens was only different from rural background values under the intense UHI regime. Thus, the impact of heatwaves on the urban environment of Athens is dependent on UHI intensity. There is a large increase in the future frequency of nights with Tmin > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site. This large urban amplification of the frequency of extremely hot nights is likely caused by air pollution. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be highly effective in reducing urban temperatures and extreme heat events in Athens under future climate change scenarios. Such policies directly have multiple benefits, including reduced electricity (energy) needs, improved living quality and strong health advantages (heat- and pollution-related illness/deaths).


2021 ◽  
Author(s):  
Roman Výleta ◽  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavcova

<p>The future development of the runoff conditions, as a consequence of climate change, is of great interest for water managers. Information about the potential impacts of climate change on the hydrological regime is needed for long-term planning of water resources and flood protection.</p><p>The aim of this study is to evaluate the possible impacts of climate change on the runoff regime in five selected catchments located in the territory of Slovakia. Changes in climatic characteristics (i.e., precipitation and air temperature) for future time horizons were prepared by a regional climate model KNMI using the A1B emission scenario. The selected climatic scenario predicts a general increase in air temperature and precipitation (higher in winter than in summer). For simulations of runoff under changed conditions, a lumped rainfall-runoff model (the TUW model) was used. This model belongs to a group of conceptual models and follows a structure of a widely used Swedish HBV model. The TUW model was calibrated for the period of 2011 – 2019. We assumed that this period would be similar (to recent/warmer climate) in terms of the average daily air temperatures and daily precipitation totals. The future changes in runoff due to climate change were evaluated by comparing the simulated long-term mean monthly runoff for the current state (1981-2010) and modelled scenarios in three time periods (2011-2040, 2041-2070, and 2071-2100). The results indicate that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future. The runoff should increase in winter months compared to the reference period. This increase is probably related to a rise in temperature and anticipated snowmelt. Conversely, during the summer periods, a decrease in the long-term runoff could be assumed. According to modelling, these changes will be more pronounced in the later time horizons.</p><p>It should be noted that the results of the simulation are dependent on the availability of the inputs, the hydrological/climate model used, the schematization of the simulated processes, etc. Therefore, they need to be interpreted with a sufficient degree of caution</p>


Sign in / Sign up

Export Citation Format

Share Document