scholarly journals Flavivirus integrations in Aedes aegypti are limited and highly conserved across samples from different geographic regions unlike integrations in Aedes albopictus

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anton Spadar ◽  
Jody E. Phelan ◽  
Ernest Diez Benavente ◽  
Monica Campos ◽  
Lara Ferrero Gomez ◽  
...  

AbstractMosquitoes of the genus Aedes are the main vectors of many viruses, e.g. dengue and Zika, which affect millions of people each year and for which there are limited treatment options. Understanding how Aedes mosquitoes tolerate high viral loads may lead to better disease control strategies. Elucidating endogenous viral elements (EVEs) within vector genomes may give exploitable biological insights. Previous studies have reported the presence of a large number of EVEs in Aedes genomes. Here we investigated if flavivirus EVEs are conserved across populations and different Aedes species by using ~ 500 whole genome sequence libraries from Aedes aegypti and Aedes albopictus, sourced from colonies and field mosquitoes across continents. We found that nearly all flavivirus EVEs in the Ae. aegypti reference genome originate from four separate putative viral integration events, and that they are highly conserved across geographically diverse samples. By contrast, flavivirus EVEs in the Ae. albopictus reference genome originate from up to nine distinct integration events and show low levels of conservation, even within samples from narrow geographical ranges. Our analysis suggests that flaviviruses integrated as long sequences and were subsequently fragmented and shuffled by transposable elements. Given that EVEs of Ae. aegypti and Ae. albopictus belong to different phylogenetic clades and have very differing levels of conservation, they may have different evolutionary origins and potentially different functional roles.

2019 ◽  
Author(s):  
Stephanie Gamez ◽  
Igor Antoshechkin ◽  
Stelia C. Mendez-Sanchez ◽  
Omar S. Akbari

AbstractAedes albopictus mosquitoes are important vectors for a number of human pathogens including the Zika, dengue, and chikungunya viruses. Capable of displacing Aedes aegypti populations, it adapts to cooler environments which increases its geographical range and transmission potential. There are limited control strategies for Aedes albopictus mosquitoes which is likely attributed to the lack of comprehensive biological studies on this emerging vector. To fill this void, here using RNAseq we characterized Aedes albopictus mRNA expression profiles at 47 distinct time points throughout development providing the first high-resolution comprehensive view of the developmental transcriptome of this worldwide human disease vector. This enabled us to identify several patterns of shared gene expression among tissues as well as sex-specific expression patterns. Moreover, to illuminate the similarities and differences between Aedes aegypti, a related human disease vector, we performed a comparative analysis using the two developmental transcriptomes. We identify life stages were the two species exhibited significant differential expression among orthologs. These findings provide insights into the similarities and differences between Aedes albopictus and Aedes aegypti mosquito biology. In summary, the results generated from this study should form the basis for future investigations on the biology of Aedes albopictus mosquitoes and provide a goldmine resource for the development of transgene-based vector control strategies.


2020 ◽  
Vol 10 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Stephanie Gamez ◽  
Igor Antoshechkin ◽  
Stelia C. Mendez-Sanchez ◽  
Omar S. Akbari

Aedes albopictus mosquitoes are important vectors for a number of human pathogens including the Zika, dengue, and chikungunya viruses. Capable of displacing Aedes aegypti populations, this mosquito adapts to cooler environments which increases its geographical range and transmission potential. There are limited control strategies for Aedes albopictus mosquitoes which is likely attributed to the lack of comprehensive biological studies on this emerging vector. To fill this void, here using RNAseq we characterized Aedes albopictus mRNA expression profiles at 34 distinct time points throughout development providing the first high-resolution comprehensive view of the developmental transcriptome of this worldwide human disease vector. This enabled us to identify several patterns of shared gene expression among tissues as well as sex-specific expression patterns. To illuminate the similarities and differences with Aedes aegypti, a related human disease vector, we also performed a comparative analysis between the two developmental transcriptomes, identifying life stages where the two species exhibit similar and distinct gene expression patterns. These findings provide insights into the similarities and differences between Aedes albopictus and Aedes aegypti mosquito biology. In summary, the results generated from this study should form the basis for future investigations on the biology of Aedes albopictus and provide a gold mine resource for the development of transgene-based vector control strategies.


ENTOMON ◽  
2018 ◽  
Vol 43 (4) ◽  
pp. 223-230
Author(s):  
S. Sunil Kumar ◽  
D.A. Evans ◽  
K. Muthulakshmi ◽  
T. DilipKumar ◽  
R. Heera Pillai ◽  
...  

Mosquito index study of three ecologically different ecozones of the Thiruvananthapuram district, Kerala showed sharp difference on the proportionate distribution of Aedes aegypti and Aedes albopictus. Human dengue viremia (HDV) was very high in those ecozones where A.aegypti density was high and HDV was low where A.albopictus was high. In a coastal zone of Thiruvananthapuram city, A. aegypti was the most abundant vector and in a hilly, arid suburban zone, A.albopictus was the abundant vector. In the urban zone both species of mosquitoes showed equal distribution. Study on the circulating serotypes in the serum of HDV by Single step single tube Multiplex PCR showed all the four serotypes viz DENV1, DENV2, DENV3 and DENV4 in patients of Thiruvananthapuram city, which indicated the possibility of Dengue Shock Syndrome, unless there is efficient vector management. Among the four dengue serotypes, Type 1 was the most abundant virus. Abundance of microhabitats in Thiruvananthapuram city, which support A. aegypti may be the reason for high prevalence of dengue fever in the urban zone.


2020 ◽  
Vol 10 (1) ◽  
pp. 67-77
Author(s):  
Amos Watentena ◽  
Ikem Chris Okoye ◽  
Ikechukwu Eugene Onah ◽  
Onwude Cosmas Ogbonnaya ◽  
Emmanuel Ogudu

Mosquitoes of Aedes species are vectors of several arboviral diseases which continue to be a major public health problem in Nigeria. This study among other things, morphologically identified Aedes mosquitoes collected from Nsukka LGA and used an allele specific PCR amplification for discrimination of dengue vectors. Larval sampling, BG-sentinel traps and modified human landing catches were used for mosquito sampling in two selected autonomous communities of Nsukka LGA (Nsukka and Obimo). A total of 124 Aedes mosquitoes consisting of five (5) different species were collected from April to June, 2019 in a cross-sectional study that covered 126 households, under 76 distinct geographical coordinates. Larvae was mainly collected from plastic containers 73% (n=224), metallic containers 14% (n=43), earthen pots 9% (n=29) and used car tyres 3% (n=9), reared to adult stage 69.35% (n=86), and all mosquitoes were identified using standard morphological keys. Five (5) Aedes mosquito species were captured; Aedes aegypti 83(66.94%), Aedes albopictus 33(26.61%), Aedes simpsoni (4.48%), Aedes luteocephalus (≤1%) and Aedes vittatus (≤1%). Nsukka autonomous community had higher species diversity than Obimo. Allele specific amplification confirmed dengue vectors, Aedes aegypti and Aedes albopictus species on a 2% agarose gel. Since the most recent re-emergence of arboviral diseases is closely associated with Aedes species, findings of this study, therefore, give further evidence about the presence of potential arboviral vectors in Nigeria and describe the role of a simple PCR in discriminating some. Further entomological studies should integrate PCR assays in mosquito vector surveillance.


2020 ◽  
Vol 42 (3) ◽  
Author(s):  
André Emanuel Dantas Mercês ◽  
Angela de Souza Cajuhi ◽  
Lorena Conceição Souza dos Santos ◽  
Rudval Souza da Silva ◽  
Cleuma Sueli Santos Suto ◽  
...  

O Zika vírus é um arbovírus transmitido pela picada dos mosquitos Aedes aegypti e Aedes albopictus infectados e apresentam como principais manifestações clínicas: febre aguda, exantema, prurido e conjuntivite. Em 2015 causou uma epidemia no Brasil, desencadeando casos de microcefalia em bebês cujas gestantes tiveram a febre da Zika. O Nordeste notificou o maior número de casos. Objetivou-se identificar, a partir de uma revisão integrativa, a relação entre a febre da Zika e a microcefalia. Trata-se de revisão integrativa, realizada a partir de buscas desenvolvidas nas bases de dados da Biblioteca Virtual em Saúde (BVS) e da Scientific Electronic Library Online (SciELO) com publicações dos anos de 2015 e 2016, idiomas português e inglês. Foram encontradas 191 publicações, as quais passaram por um processo de leitura e análise quanto ao atendimento do objetivo e aplicação dos critérios de inclusão. Restaram oito publicações que integraram o corpus desta revisão. Os resultados apontam para uma relação de causa e efeito entre o contato das gestantes com o Zika vírus e o desenvolvimento de microcefalia em seus bebês. Necessita-se de maiores evidências que demonstrem os reais fatores envolvidos nesse processo, como os genéticos, ambientais e até mesmo interferência de outras infecções. Palavras-chave: Zika vírus. Microcefalia. Aplicações da epidemiologia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song-Quan Ong ◽  
Hamdan Ahmad ◽  
Gomesh Nair ◽  
Pradeep Isawasan ◽  
Abdul Hafiz Ab Majid

AbstractClassification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.


Acta Tropica ◽  
2021 ◽  
Vol 218 ◽  
pp. 105885
Author(s):  
Janinna Faraone ◽  
Sylvia Fischer ◽  
Carla Agustina Aponte ◽  
Eduardo Etchepare ◽  
Ornela Sofia Stechina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document