scholarly journals Exploratory analysis of age and sex dependent DNA methylation patterns on the X-chromosome in whole blood samples

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuxia Li ◽  
Jesper B. Lund ◽  
Kaare Christensen ◽  
Jan Baumbach ◽  
Jonas Mengel-From ◽  
...  
2021 ◽  
Author(s):  
Aoji Xie ◽  
Elizabeth Ensink ◽  
Peipei Li ◽  
Juozas Gordevicius ◽  
Lee L. Marshall ◽  
...  

Background The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. Here, we investigate whether the changes in the gut microbiome and associated metabolites are linked to PD symptoms and epigenetic markers in leucocytes and neurons. Methods Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified the genome-wide DNA methylation by targeted bisulfite sequencing. Results We show that lower fecal butyrate and reduced Roseburia, Romboutsia, and Prevotella counts are linked to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA (mDNA) regions in PD overlap with those altered in gastrointestinal, autoimmune, and psychiatric diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cancan Qi ◽  
◽  
Judith M. Vonk ◽  
Diana A. van der Plaat ◽  
Maartje A. E. Nieuwenhuis ◽  
...  

Abstract Background Asthma is a chronic respiratory disease which is not curable, yet some patients experience spontaneous remission. We hypothesized that epigenetic mechanisms may be involved in asthma remission. Methods Clinical remission (ClinR) was defined as the absence of asthma symptoms and medication for at least 12 months, and complete remission (ComR) was defined as ClinR with normal lung function and absence of airway hyperresponsiveness. We analyzed differential DNA methylation of ClinR and ComR comparing to persistent asthma (PersA) in whole blood samples (n = 72) and nasal brushing samples (n = 97) in a longitudinal cohort of well characterized asthma patients. Significant findings of whole blood DNA methylation were tested for replication in two independent cohorts, Lifelines and Epidemiological study on the Genetics and Environment of Asthma (EGEA). Results We identified differentially methylated CpG sites associated with ClinR (7 CpG sites) and ComR (129 CpG sites) in whole blood. One CpG (cg13378519, Chr1) associated with ClinR was replicated and annotated to PEX11 (Peroxisomal Biogenesis Factor 11 Beta). The whole blood DNA methylation levels of this CpG were also different between ClinR and healthy subjects. One ComR-associated CpG (cg24788483, Chr10) that annotated to TCF7L2 (Transcription Factor 7 Like 2) was replicated and associated with expression of TCF7L2 gene. One out of seven ClinR-associated CpG sites and 8 out of 129 ComR-associated CpG sites identified from whole blood samples showed nominal significance (P < 0.05) and the same direction of effect in nasal brushes. Conclusion We identified DNA methylation markers possibly associated with clinical and complete asthma remission in nasal brushes and whole blood, and two CpG sites identified from whole blood can be replicated in independent cohorts and may play a role in peroxisome proliferation and Wnt signaling pathway.


2010 ◽  
Vol 41 (02) ◽  
Author(s):  
N Shazi ◽  
A Böss ◽  
HJ Merkel ◽  
F Scharbert ◽  
D Hannak ◽  
...  

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 78
Author(s):  
Sevasti Karampela ◽  
Jessica Smith ◽  
Irene Panderi

An ever-increasing need exists within the forensic laboratories to develop analytical processes for the qualitative and quantitative determination of a broad spectrum of new psychoactive substances. Phenylethylamine derivatives are among the major classes of psychoactive substances available on the global market and include both amphetamine analogues and synthetic cathinones. In this work, an ultra-high-performance liquid chromatography-positive ion electrospray ionization tandem mass spectrometric method (UHPLC-ESI-MS/MS) has been developed and fully validated for the determination of 19 psychoactive substances, including nine amphetamine-type stimulants and 10 synthetic cathinone derivatives, in premortem and postmortem whole blood. The assay was based on the use of 1 mL premortem or postmortem whole blood, following solid phase extraction prior to the analysis. The separation was achieved on a Poroshell 120 EC-C18 analytical column with a gradient mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water in 9 min. The dynamic multiple reaction monitoring used in this work allowed for limit of detection (LOD) and lower limit of quantitation (LOQ) values of 0.5 and 2 ng mL−1, respectively, for all analytes both in premortem and postmortem whole blood samples. A quadratic calibration model was used for the 12 quantitative analytes over the concentration range of 20–2000 ng mL−1, and the method was shown to be precise and accurate both in premortem and postmortem whole blood. The method was applied to the analysis of real cases and proved to be a valuable tool in forensic and clinical toxicology.


2021 ◽  
Vol 2 (1) ◽  
pp. 100311
Author(s):  
Daniella C. Terenzi ◽  
Ehab Bakbak ◽  
Justin Z. Trac ◽  
Mohammad Al-Omran ◽  
Adrian Quan ◽  
...  

Author(s):  
Polina A. Dyachenko Timoshina ◽  
Leonid E. Dolotov ◽  
Ekaterina N. Lazareva ◽  
Anastasiia A. Kozlova ◽  
Olga A. Inozemtseva ◽  
...  

1994 ◽  
Vol 42 (3) ◽  
pp. 231-241 ◽  
Author(s):  
C. Shenberg ◽  
S. Spiegel ◽  
S. Chaitchik ◽  
P. Jordan ◽  
M. Kitzis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document