scholarly journals A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Thinh T. Nguyen ◽  
Hyun-Sung Lee ◽  
Bryan M. Burt ◽  
Jia Wu ◽  
Jianjun Zhang ◽  
...  

Abstract Background Lung adenocarcinoma, the most common type of lung cancer, has a high level of morphologic heterogeneity and is composed of tumor cells of multiple histological subtypes. It has been reported that immune cell infiltration significantly impacts clinical outcomes of patients with lung adenocarcinoma. However, it is unclear whether histologic subtyping can reflect the tumor immune microenvironment, and whether histologic subtyping can be applied for therapeutic stratification of the current standard of care. Methods We inferred immune cell infiltration levels using a histological subtype-specific gene expression dataset. From differential gene expression analysis between different histological subtypes, we developed two gene signatures to computationally determine the relative abundance of lepidic and solid components (denoted as the L-score and S-score, respectively) in lung adenocarcinoma samples. These signatures enabled us to investigate the relationship between histological composition and clinical outcomes in lung adenocarcinoma using previously published datasets. Results We found dramatic immunological differences among histological subtypes. Differential gene expression analysis showed that the lepidic and solid subtypes could be differentiated based on their gene expression patterns while the other subtypes shared similar gene expression patterns. Our results indicated that higher L-scores were associated with prolonged survival, and higher S-scores were associated with shortened survival. L-scores and S-scores were also correlated with global genomic features such as tumor mutation burdens and driver genomic events. Interestingly, we observed significantly decreased L-scores and increased S-scores in lung adenocarcinoma samples with EGFR gene amplification but not in samples with EGFR gene mutations. In lung cancer cell lines, we observed significant correlations between L-scores and cell sensitivity to a number of targeted drugs including EGFR inhibitors. Moreover, lung cancer patients with higher L-scores were more likely to benefit from immune checkpoint blockade therapy. Conclusions Our findings provided further insights into evaluating histology composition in lung adenocarcinoma. The established signatures reflected that lepidic and solid subtypes in lung adenocarcinoma would be associated with prognosis, genomic features, and responses to targeted therapy and immunotherapy. The signatures therefore suggested potential clinical translation in predicting patient survival and treatment responses. In addition, our framework can be applied to other types of cancer with heterogeneous histological subtypes.

Author(s):  
Lu Yuan ◽  
Xixi Wu ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xiaoqing Wang ◽  
...  

AbstractPulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


2021 ◽  
Author(s):  
Jinglei Li ◽  
Wei Hou

Abstract Purpose: Lung adenocarcinoma (LUAD) has high heterogeneity and poor prognosis, posing a major challenge to human health worldwide. Therefore, it is necessary to improve our understanding of the molecular mechanism of LUAD in order to be able to better predict its prognosis and develop new therapeutic strategies for target genes.Methods: The Cancer Genome Atlas and Gene Expression Omnibus, were selected to comprehensively analyze and explore the differences between LUAD tumors and adjacent normal tissues. Critical gene information was obtained through weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and survival analysis.Results: Using WGCNA and differential gene expression analysis, 29 differentially expressed genes were screened. The functional annotation analysis showed these genes to be mainly concentrated in heart trabecula formation, regulation of inflammatory response, collagen-containing extracellular matrix, and metalloendopeptidase inhibitor activity. Also, in the protein–protein interaction network analysis, 10 central genes were identified using Cytoscape's CytoHubba plug-in. The expression of CDH5, TEK, TIMP3, EDNRB, EPAS1, MYL9, SPARCL1, KLF4, and TGFBR3 in LUAD tissue was found to be lower than that in the normal control group, while the expression of MMP1 in LUAD tissue was higher than that in the normal control group. According to survival analysis, the low expression of MYL9 and SPARCL1 was correlated with poor overall survival in patients with LUAD. Finally, through the verification of the Oncomine database, it was found that the expression levels of MYL9 and SPARCL1 were consistent with the mRNA levels in LUAD samples, and both were downregulated.Conclusion: Two survival-related genes, MYL9 and SPARCL1, were determined to be highly correlated with the development of LUAD. Both may play an essential role in the development LUAD and may be potential biomarkers for its diagnosis and treatment in the future.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A954-A955
Author(s):  
Jacob Kaufman ◽  
Doug Cress ◽  
Theresa Boyle ◽  
David Carbone ◽  
Neal Ready ◽  
...  

BackgroundLKB1 (STK11) is a commonly disrupted tumor suppressor in NSCLC. Its loss promotes an immune exclusion phenotype with evidence of low expression of interferon stimulated genes (ISG) and decreased microenvironment immune infiltration.1 2 Clinically, LKB1 loss induces primary immunotherapy resistance.3 LKB1 is a master regulator of a complex downstream kinase network and has pleiotropic effects on cell biology. Understanding the heterogeneous phenotypes associated with LKB1 loss and their influence on tumor-immune biology will help define and overcome mechanisms of immunotherapy resistance within this subset of lung cancer.MethodsWe applied multi-omic analyses across multiple lung adenocarcinoma datasets2 4–6 (>1000 tumors) to define transcriptional and genetic features enriched in LKB1-deficient lung cancer. Top scoring phenotypes exhibited heterogeneity across LKB1-loss tumors, and were further interrogated to determine association with increased or decreased markers of immune activity. Further, immune cell-types were estimated by Cibersort to identify effects of LKB1 loss on the immune microenvironment. Key conclusions were confirmed by blinded pathology review.ResultsWe show that LKB1 loss significantly affects differentiation patterns, with enrichment of ASCL1-expressing tumors with putative neuroendocrine differentiation. LKB1-deficient neuroendocrine tumors had lower expression of Interferon Stimulated Genes (ISG), MHC1 and MHC2 components, and immune infiltration compared to LKB1-WT and non-neuroendocrine LKB1-deficient tumors (figure 1).The abundances of 22 immune cell types assessed by Cibersort were compared between LKB1-deficient and LKB1-WT tumors. We observe skewing of immune microenvironmental composition by LKB1 loss, with lower abundance of dendritic cells, monocytes, and macrophages, and increased levels of neutrophils and plasma cells (table 1). These trends were most pronounced among tumors with neuroendocrine differentiation, and were concordant across three independent datasets. In a confirmatory subset of 20 tumors, plasma cell abundance was assessed by a blinded pathologist. Pathologist assessment was 100% concordant with Cibersort prediction, and association with LKB1 loss was confirmed (P=0.001).Abstract 909 Figure 1Immune-associated Gene Expression Profiles Affected by Neuroendocrine Differentiation within LKB1-Deficient Lung Adenocarcinomas. Gene expression profiles corresponding to five immune-associated phenotypes are shown with bars indicating average GEP scores for tumors grouped according to LKB1 and neuroendocrine status as indicated. P-values represent results from Student’s T-test between groups as indicated.Abstract 909 Table 1LKB1 Loss Affects Composition of Immune Microenvironment. Values indicate log10 P-values comparing LKB1-loss to LKB1-WT tumors. Positive (red) indicates increased abundance in LKB1 loss. Negative (blue) indicates decreased abundance.ConclusionsWe conclude that tumor differentiation patterns strongly influence the immune microenvironment and immune exclusion characteristics of LKB1-deficient tumors. Neuroendocrine differentiation is associated with the strongest immune exclusion characteristics and should be evaluated clinically for evidence of immunotherapy resistance. A novel observation of increased plasma cell abundance is observed across multiple datasets and confirmed by pathology. Causal mechanisms linking differentiation status to immune activity is not well understood, and the functional role of plasma cells in the immune biology of LKB1-deficient tumors is undefined. These questions warrant further study to inform precision immuno-oncology treatments for these patients.AcknowledgementsThis work was funded by SITC AZ Immunotherapy in Lung Cancer grant (SPS256666) and DOD Lung Cancer Research Program Concept Award (LC180633).ReferencesSkoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77.Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35:3209–16.Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery 2018;8:822-835.Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543–50.Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009;28:2773–83.Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822–7.


Author(s):  
Mohsen Ahmadi ◽  
Negin Saffarzadeh ◽  
Mohammad Amin Habibi ◽  
Fatemeh Hajiesmaeili ◽  
Nima Rezaei

AbstractNovel coronavirus disease (COVID-19) pandemic has become a global health emergency. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with angiotensin-converting enzyme 2 (ACE2) to enter the cells and infects diverse human tissues. It has been reported that a few conditions, including cancer, predispose individuals to SARS-CoV-2 infection and severe form of COVID-19. These findings led us to evaluate the susceptibility of colon adenocarcinoma (COAD) patients to SARS-CoV-2 infection by investigation of ACE2 expression in their tumor tissues. The expression analysis revealed that both mRNA and protein levels of ACE2 had increased in colon cancer samples than normal group. Next, the prognosis analysis has indicated that the upregulation of ACE2 was not correlated with patient survival outcomes. Further assessment displayed the hypomethylation of the ACE2 gene promoter in COAD patients. Surprisingly, this methylation status has a strong negative correlation with ACE2 gene expression. The functional enrichment analysis of the genes that had similar expression patterns with ACE2 in colon cancer tissues demonstrated that they mainly enriched in Vitamin digestion and absorption, Sulfur relay system, and Fat digestion and absorption pathways. Finally, we found that ACE2 gene expression had a significant association with the immune cell infiltration levels in COAD patients. In conclusion, it has plausible that COAD patients are more likely to be infected with SARS-CoV-2 and experience severe injuries. Moreover, COVID-19 would bring unfavorable survival outcomes of patients with colon cancer by the way of immune cell infiltration linked process. The present study highlights the importance of preventive actions for COAD patients during the COVID-19 pandemic.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3484
Author(s):  
Jisun Lim ◽  
Yeon Bi Han ◽  
Soo Young Park ◽  
Soyeon Ahn ◽  
Hyojin Kim ◽  
...  

Many studies support a stepwise continuum of morphologic changes between atypical adenomatous hyperplasia (AAH) and lung adenocarcinoma (ADC). Here we characterized gene expression patterns and the association of differentially expressed genes and immune tumor microenvironment behaviors in AAH to ADC during ADC development. Tumor tissues from nine patients with ADC and synchronous multiple ground glass nodules/lesions (GGN/Ls) were analyzed using RNA sequencing. Using clustering, we identified genes differentially and sequentially expressed in AAH and ADC compared to normal tissues. Functional enrichment analysis using gene ontology terms was performed, and the fraction of immune cell types was estimated. We identified up-regulated genes (ACSL5 and SERINC2) with a stepwise change of expression from AAH to ADC and validated those expressions by quantitative PCR and immunohistochemistry. The immune cell profiles revealed increased B cell activities and decreased natural killer cell activities in AAH and ADC. A stepwise change of differential expression during ADC development revealed potential effects on immune function in synchronous precursors and in tumor lesions in patients with lung cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanqi Li ◽  
Xiao Lu ◽  
Jiao Zhang ◽  
Quanxing Liu ◽  
Dong Zhou ◽  
...  

Epidemiological investigations have shown that patients with Parkinson’s disease (PD) have a lower probability of developing lung cancer. Subsequent research revealed that PD and lung cancer share specific genetic alterations. Therefore, the utilisation of PD biomarkers and therapeutic targets may improve lung adenocarcinoma (LUAD) diagnosis and treatment. We aimed to identify a gene-based signature from 25 Parkinson family genes for LUAD prognosis and treatment choice. We analysed Parkinson family gene expression and protein levels in LUAD, utilising multiple databases. Least absolute shrinkage and selection operator (LASSO) regression was used to construct a prognostic model based on the TCGA-LUAD cohort. We validated the model in external GEO cohorts. Immune cell infiltration was compared between risk groups, and GEO data was used to explore the model’s predictive ability for LUAD treatment response. Nearly all Parkinson family genes exhibited significant differential expression between LUAD and normal tissues. LASSO regression confirmed that our seven Parkinson family gene-based signature had excellent prognostic performance for LUAD, as validated in three GEO cohorts. The high-risk group was clearly associated with low tumour immune cell infiltration, suggesting that immunotherapy may not be an optimal treatment choice. This is the first Parkinson family gene-based model for the prediction of LUAD prognosis and treatment outcome. The association of these genes with poor prognosis and low immune infiltration requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document