scholarly journals Epigenome-wide association study of Alzheimer’s disease replicates 22 differentially methylated positions and 30 differentially methylated regions

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingqin S. Li ◽  
Yu Sun ◽  
Tania Wang

Abstract Background Growing evidence shows that epigenetic modifications play a role in Alzheimer’s disease (AD). We performed an epigenome-wide association study (EWAS) to evaluate the DNA methylation differences using postmortem superior temporal gyrus (STG) and inferior frontal gyrus (IFG) samples. Results Samples from 72 AD patients and 62 age-matched cognitively normal controls were assayed using Illumina© Infinium MethylationEPIC BeadChip. Five and 14 differentially methylated positions (DMPs) associated with pathology (i.e., Braak stage) with p value less than Bonferroni correction threshold of 6.79 × 10–8 in the STG and IFG were identified, respectively. These cytosine–phosphate–guanine (CpG) sites included promoter associated cg26263477 annotated to ABCA7 in the STG (p = 1.21 × 10–11), and cg14058329 annotated to the HOXA5/HOXA3/HOXA-AS3 gene cluster (p = 1.62 × 10–9) and cg09448088 (p = 3.95 × 10–9) annotated to MCF2L in the IFG. These genes were previously reported to harbor DMPs and/or differentially methylated regions (DMRs). Previously reported DMPs annotated to RMGA, GNG7, HOXA3, GPR56, SPG7, PCNT, RP11-961A15.1, MCF2L, RHBDF2, ANK1, PCNT, TPRG1, and RASGEF1C were replicated (p < 0.0001). One hundred twenty-one and 173 DMRs associated with pathology in the STG and IFG, respectively, were additionally identified. Of these, DMRs annotated to 30 unique genes were also identified as significant DMRs in the same brain region in a recent meta-analysis, while additional DMRs annotated to 12 genes were reported as DMRs in a different brain region or in a cross-cortex meta-analysis. The significant DMRs were enriched in promoters, CpG islands, and exons in the genome. Gene set enrichment analysis of DMPs and DMRs showed that gene sets involved in neuroinflammation (e.g., microglia differentiation), neurogenesis, and cognition were enriched (false discovery rate (FDR) < 0.05). Conclusions Twenty-two DMPs and 30 DMRs associated with pathology were replicated, and novel DMPs and DMRs were discovered.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lanyu Zhang ◽  
Tiago C. Silva ◽  
Juan I. Young ◽  
Lissette Gomez ◽  
Michael A. Schmidt ◽  
...  

AbstractDNA methylation differences in Alzheimer’s disease (AD) have been reported. Here, we conducted a meta-analysis of more than 1000 prefrontal cortex brain samples to prioritize the most consistent methylation differences in multiple cohorts. Using a uniform analysis pipeline, we identified 3751 CpGs and 119 differentially methylated regions (DMRs) significantly associated with Braak stage. Our analysis identified differentially methylated genes such as MAMSTR, AGAP2, and AZU1. The most significant DMR identified is located on the MAMSTR gene, which encodes a cofactor that stimulates MEF2C. Notably, MEF2C cooperates with another transcription factor, PU.1, a central hub in the AD gene network. Our enrichment analysis highlighted the potential roles of the immune system and polycomb repressive complex 2 in pathological AD. These results may help facilitate future mechanistic and biomarker discovery studies in AD.


Author(s):  
Rebecca G. Smith ◽  
Ehsan Pishva ◽  
Gemma Shireby ◽  
Adam R. Smith ◽  
Janou A.Y. Roubroeks ◽  
...  

ABSTRACTEpigenome-wide association studies of Alzheimer’s disease have highlighted neuropathology-associated DNA methylation differences, although existing studies have been limited in sample size and utilized different brain regions. Here, we combine data from six DNA methylomic studies of Alzheimer’s disease (N=1,453 unique individuals) to identify differential methylation associated with Braak stage in different brain regions and across cortex. We identified 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and ten CpGs in the entorhinal cortex at Bonferroni significance, with none in the cerebellum. Our cross-cortex meta-analysis (N=1,408 donors) identified 220 CpGs associated with neuropathology, annotated to 121 genes, of which 84 genes had not been previously reported at this significance threshold. We have replicated our findings using two further DNA methylomic datasets consisting of a > 600 further unique donors. The meta-analysis summary statistics are available in our online data resource (www.epigenomicslab.com/ad-meta-analysis/).


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009363
Author(s):  
Nana Liu ◽  
Jiayuan Xu ◽  
Huaigui Liu ◽  
Shijie Zhang ◽  
Miaoxin Li ◽  
...  

Genome-wide association studies (GWASs) have identified multiple susceptibility loci for Alzheimer’s disease (AD), which is characterized by early and progressive damage to the hippocampus. However, the association of hippocampal gene expression with AD and the underlying neurobiological pathways remain largely unknown. Based on the genomic and transcriptomic data of 111 hippocampal samples and the summary data of two large-scale meta-analyses of GWASs, a transcriptome-wide association study (TWAS) was performed to identify genes with significant associations between hippocampal expression and AD. We identified 54 significantly associated genes using an AD-GWAS meta-analysis of 455,258 individuals; 36 of the genes were confirmed in another AD-GWAS meta-analysis of 63,926 individuals. Fine-mapping models further prioritized 24 AD-related genes whose effects on AD were mediated by hippocampal expression, including APOE and two novel genes (PTPN9 and PCDHA4). These genes are functionally related to amyloid-beta formation, phosphorylation/dephosphorylation, neuronal apoptosis, neurogenesis and telomerase-related processes. By integrating the predicted hippocampal expression and neuroimaging data, we found that the hippocampal expression of QPCTL and ERCC2 showed significant difference between AD patients and cognitively normal elderly individuals as well as correlated with hippocampal volume. Mediation analysis further demonstrated that hippocampal volume mediated the effect of hippocampal gene expression (QPCTL and ERCC2) on AD. This study identifies two novel genes associated with AD by integrating hippocampal gene expression and genome-wide association data and reveals candidate hippocampus-mediated neurobiological pathways from gene expression to AD.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jake Gockley ◽  
Kelsey S. Montgomery ◽  
William L. Poehlman ◽  
Jesse C. Wiley ◽  
Yue Liu ◽  
...  

Abstract Background Alzheimer’s disease (AD) is an incurable neurodegenerative disease currently affecting 1.75% of the US population, with projected growth to 3.46% by 2050. Identifying common genetic variants driving differences in transcript expression that confer AD risk is necessary to elucidate AD mechanism and develop therapeutic interventions. We modify the FUSION transcriptome-wide association study (TWAS) pipeline to ingest gene expression values from multiple neocortical regions. Methods A combined dataset of 2003 genotypes clustered to 1000 Genomes individuals from Utah with Northern and Western European ancestry (CEU) was used to construct a training set of 790 genotypes paired to 888 RNASeq profiles from temporal cortex (TCX = 248), prefrontal cortex (FP = 50), inferior frontal gyrus (IFG = 41), superior temporal gyrus (STG = 34), parahippocampal cortex (PHG = 34), and dorsolateral prefrontal cortex (DLPFC = 461). Following within-tissue normalization and covariate adjustment, predictive weights to impute expression components based on a gene’s surrounding cis-variants were trained. The FUSION pipeline was modified to support input of pre-scaled expression values and support cross validation with a repeated measure design arising from the presence of multiple transcriptome samples from the same individual across different tissues. Results Cis-variant architecture alone was informative to train weights and impute expression for 6780 (49.67%) autosomal genes, the majority of which significantly correlated with gene expression; FDR < 5%: N = 6775 (99.92%), Bonferroni: N = 6716 (99.06%). Validation of weights in 515 matched genotype to RNASeq profiles from the CommonMind Consortium (CMC) was (72.14%) in DLPFC profiles. Association of imputed expression components from all 2003 genotype profiles yielded 8 genes significantly associated with AD (FDR < 0.05): APOC1, EED, CD2AP, CEACAM19, CLPTM1, MTCH2, TREM2, and KNOP1. Conclusions We provide evidence of cis-genetic variation conferring AD risk through 8 genes across six distinct genomic loci. Moreover, we provide expression weights for 6780 genes as a valuable resource to the community, which can be abstracted across the neocortex and a wide range of neuronal phenotypes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebecca G. Smith ◽  
Ehsan Pishva ◽  
Gemma Shireby ◽  
Adam R. Smith ◽  
Janou A. Y. Roubroeks ◽  
...  

AbstractEpigenome-wide association studies of Alzheimer’s disease have highlighted neuropathology-associated DNA methylation differences, although existing studies have been limited in sample size and utilized different brain regions. Here, we combine data from six DNA methylomic studies of Alzheimer’s disease (N = 1453 unique individuals) to identify differential methylation associated with Braak stage in different brain regions and across cortex. We identify 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and ten CpGs in the entorhinal cortex at Bonferroni significance, with none in the cerebellum. Our cross-cortex meta-analysis (N = 1408 donors) identifies 220 CpGs associated with neuropathology, annotated to 121 genes, of which 84 genes have not been previously reported at this significance threshold. We have replicated our findings using two further DNA methylomic datasets consisting of a further >600 unique donors. The meta-analysis summary statistics are available in our online data resource (www.epigenomicslab.com/ad-meta-analysis/).


2001 ◽  
Vol 314 (1-2) ◽  
pp. 92-96 ◽  
Author(s):  
Carsten Russ ◽  
John F Powell ◽  
Jinghua Zhao ◽  
Matt Baker ◽  
Mike Hutton ◽  
...  

Author(s):  
Amir A. Sepehry ◽  
Alexander Rauscher ◽  
Ging-Yuek Hsiung ◽  
Donna J. Lang

AbstractThe current literature on the role of brain microbleeds (MB) on the neuropsychological outcomes of Alzheimer’s disease (AD) is heterogeneous. We therefore meta-analytically examined the neuropsychological literature pertaining to MBs in AD. Using a priori selected criteria, studies with cross-sectional neuropsychological assessment on MBs and AD were reviewed. Six of 122 studies met selection criteria and provided neuropsychological data on either AD with MB and without MB, or in contrast to healthy controls. The global neuropsychological difference between AD with MB and AD without MB based on random effect model was nonsignificant, heterogeneous, and small (Effect Size =−0.155; 95% confidence interval =−0.465 to 0.155; p value =0.326; Heterogenity: Q-value =12.744; degrees of freedom =5; p =0.026; I2 =61%). The contribution of MBs to cognitive deficits in AD remains unclear. Future studies of MB in AD should strive to use standardized neuroimaging techniques with high sensitivity for MB, a common standard for MB definition, and neuropsychological tests sensitive for detecting subtle cognitive impairment.


2021 ◽  
Vol 13 ◽  
Author(s):  
Wuhan Yu ◽  
Weihua Yu ◽  
Yan Yang ◽  
Yang Lü

BackgroundAlzheimer’s disease (AD) is one of the major threats of the twenty-first century and lacks available therapy. Identification of novel molecular markers for diagnosis and treatment of AD is urgently demanded, and genetic biomarkers show potential prospects.MethodWe identify and intersected differentially expressed genes (DEGs) from five microarray datasets to detect consensus DEGs. Based on these DEGs, we conducted Gene Ontology (GO), performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, constructed a protein—protein interaction (PPI) network, and utilized Cytoscape to identify hub genes. The least absolute shrinkage and selection operator (LASSO) logistic regression was applied to identify potential diagnostic biomarkers. Gene set enrichment analysis (GSEA) was performed to investigate the biological functions of the key genes.ResultWe identified 608 consensus DEGs, several dysregulated pathways, and 18 hub genes. Sixteen hub genes dysregulated as AD progressed. The diagnostic model of 35 genes was constructed, which has a high area under the curve (AUC) value in both the validation dataset and combined dataset (AUC = 0.992 and AUC = 0.985, respectively). The model can also differentiate mild cognitive impairment and AD patients from controls in two blood datasets. Brain-derived neurotrophic factor (BDNF) and WW domain-containing transcription regulator protein 1 (WWTR1), which are associated with the Braak stage, Aβ 42 levels, and β-secretase activity, were identified as critical genes of AD.ConclusionOur study identified 16 hub genes correlated to the neuropathological stage and 35 potential biomarkers for the diagnosis of AD. WWTR1 were identified as candidate genes for future studies. This study deepens our understanding of the transcriptomic and functional features and provides new potential diagnostic biomarkers and therapeutic targets for AD.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1805
Author(s):  
Nathalie I. V. Nilsson ◽  
Cynthia Picard ◽  
Anne Labonté ◽  
Theresa Köbe ◽  
Pierre-François Meyer ◽  
...  

Midlife hypercholesterolemia is a well-known risk factor for sporadic Alzheimer’s disease (AD), and like AD, it is highly influenced by genetics with heritability estimates of 32–63%. We thus hypothesized that genetics underlying peripheral blood total cholesterol (TC) levels could influence the risk of developing AD. We created a weighted polygenic score (TC-PGS) using summary data from a meta-analysis of TC genome-wide association studies for evaluation in three independent AD-related cohorts spanning pre-clinical, clinical, and pathophysiologically proved AD. APOE-ε4 variant was purposely included in the analysis as it represents an already well-established genetic risk factor for both AD and circulating TC. We could vastly improve the performance of the score when considering p-value thresholds for inclusion in the score, sex, and statin use. This optimized score (p-value threshold of 1 × 10−6 for inclusion in the score) explained 18.2% of the variance in TC levels in statin free females compared to 6.9% in the entire sample and improved prediction of hypercholesterolemia (receiver operator characteristics analysis revealed area under the curve increase from 70.8% to 80.5%). The TC-PGS was further evaluated for association with AD risk and pathology. We found no association between the TC-PGS and either of the AD hallmark pathologies, assessed by cerebrospinal fluid levels of Aβ-42, p-Tau, and t-Tau, and 18F-NAV4694 and 18F-AV-1451 positron emission tomography. Similarly, we found no association with the risk of developing amyloid pathology or becoming cognitively impaired in individuals with amyloid pathology.


Sign in / Sign up

Export Citation Format

Share Document