scholarly journals Ultrasound enhances the therapeutic potential of mesenchymal stem cells wrapped in greater omentum for aristolochic acid nephropathy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanjun Yang ◽  
Xiaodong Geng ◽  
Kun Chi ◽  
Chao Liu ◽  
Ran Liu ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) have been reported to promote regeneration in both subjects with acute kidney injury (AKI) and chronic kidney disease (CKD), but their efficacy remains limited, probably because most of the cells accumulate in the lungs, liver, and spleen after an intravenous infusion. Therefore, ultrasound-guided administration of MSCs represents a possible approach to solve this problem. The greater omentum is used to promote cell survival due to its rich vasculature. We hypothesized that ultrasound-guided administration of MSCs combined with greater omentum might be more curative than currently available approaches. Methods In this study, we established an aristolochic acid nephropathy (AAN) model by intraperitoneally administering aristolochic acid I sodium salt (AA-I) at a dose of 5 mg/kg body weight on alternate days for 4 weeks. Subsequently, a laparotomy was performed, and the left kidney from which the capsule had been removed was wrapped with the greater omentum. A dose of 2 × 107 MSCs was injected into the space between the greater omentum and the left kidney. Equal amounts of MSCs were administered under ultrasound guidance every second week for a total of 4 treatments. Mice were sacrificed 4 weeks after surgery. Serum creatinine and blood urea levels were measured to assess renal function. qPCR, Western blot, and histological analyses were conducted to further investigate the therapeutic mechanism of MSCs. Results Ultrasound-guided injection of MSCs into the greater omentum that surrounds the kidney enriched cells in the kidney region for up to 5 days. Renal function tests indicated that MSCs improved renal function to a great extent, as reflected by decreased blood urea nitrogen and serum creatinine levels. In addition, histological analyses showed that MSCs noticeably attenuated kidney injury, as evidenced by the amelioration of tubular necrosis and peritubular interstitial fibrosis. Mitigation of renal interstitial fibrosis was further confirmed by immunohistochemistry, qPCR, and western blotting after MSC treatment. Moreover, immunofluorescence staining revealed that MSCs alleviated inflammatory responses by increasing the counts of CD206+ cells and decreasing the counts of CD68+ cells. MSC migration was initiated in response to AA-I-treated renal epithelial cells in an in vitro migration assay. Conclusions These findings suggested that administration of MSCs into the cavity formed by the injured kidney and the greater omentum under ultrasound guidance improved renal function, attenuated kidney injury, and mitigated renal interstitial fibrosis and inflammatory responses. Thus, this approach might be a safe and effective therapy for CKD.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Kuang ◽  
Sheng Wu ◽  
Ning Xue ◽  
Xiaoyan Wang ◽  
Xiaoqianq Ding ◽  
...  

Acute kidney injury (AKI) is increasingly recognized as a cumulative risk factor for chronic kidney disease (CKD) progression. However, the underlying mechanisms remain unclear. Using an aristolochic acid (AA)-induced mouse model of AKI-to-CKD transition, we found that the development of tubulointerstitial fibrosis following AKI was accompanied with a strong activation of miR-21 and canonical Wnt signaling, whereas inhibition of miR-21 or selective silencing of Wnt ligands partially attenuated AKI-to-CKD transition. To explore the interaction between miR-21 and Wnt/β-catenin signaling, we examined the effects of genetic absence or pharmacologic inhibition of miR-21 on Wnt/β-catenin pathway expression. In miR-21−/− mice and in wild-type mice treated with anti-miR21 oligos, Wnt1 and Wnt4 canonical signaling in the renal tissue was significantly reduced, with partial reversal of renal interstitial fibrosis. Although the renal abundance of miR-21 remained unchanged after inhibition or activation of Wnt/β-catenin signaling, early intervention with ICG-001, a β-catenin inhibitor, significantly attenuated renal interstitial fibrosis. Moreover, early (within 24 h), but not late β-catenin inhibition after AA administration attenuated AA-induced apoptosis and inflammation. In conclusion, inhibition of miR-21 or β-catenin signaling may be an effective approach to prevent AKI-to-CKD progression.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Natalia Stepanova ◽  
Ganna Tolstanova ◽  
Valentyn Nepomnyashchii ◽  
Iryna Akulenko ◽  
Svitlana Savchenko ◽  
...  

Abstract Background and Aims Gut microbiota is considered an important factor affecting oxalate handling in the intestine. It has been demonstrated that intestinal oxalate secretion provides a complementary route of excretion, and it becomes more evident when kidney function declines. A diversity of gut oxalate-degrading bacteria (ODB) has been hypothesized to play a role in this process. However, there is a general lack of research on the long-term effects of acute kidney injury (AKI) on ODB and their total oxalate-degrading activity (ODA) in fecal microbiota. In this study, we evaluated whether renal dysfunction could affect intestinal ODB and their total ODA in a rat model of glycerol-induced AKI. Method The Male Wistar rats (200-300 g, n=20) on oxalate-free diet were randomly divided into 2 groups. After 24-h of water deprivation, Group 1 (n=10) received an intramuscular injection of 50% glycerol (10 ml/kg of body weight), and Group 2 (n=10) served as control. The numbers of ODB (incubated in a highly selective Oxalate Medium and determined using culture method) and total fecal ODA were measured after injection on days 7 and 70. The method of redoximetric titration with a KMnO4 solution was adopted to evaluate total ODA in fecal microbiota; the results were expressed as % of oxalate degradation per 0.01 g of feces. Renal injury was assessed by histopathological examination, serum creatinine and daily proteinuria levels after removing the animals from the experiment on day 70. Cortical interstitial fibrosis was measured by computerized image analysis on sections stained with picrosirius red. The median (Me) and the interquartile ranges (Q25; Q75) were calculated and compared using the nonparametric Mann-Whitney test. The Spearman correlation coefficient was used to evaluate association between the examined parameters. Results The obtained results demonstrated: 1) after glycerol injection on day 7, no differences were found in the numbers of ODB and total fecal ODA between the experimental and control groups: 5.9 (5.4-6.0) vs 6.0 (5.4-6.4) CFU/g, p=0.65 and 2.0 (0.1-5.0) vs 2.5 (2.0-9.0) %/0.01g, p=0.24, respectively; 2) after AKI initiation on day 70, the numbers of ODB and total fecal ODA were significantly lower in Group I compared with control Group II (Fig. 1); 3) the higher percentage of renal interstitial fibrosis was, the higher total fecal ODA occurred in the experimental rats (Fig. 2). In addition, the number of ODB in feces in Group 1 had an inverse association with serum creatinine (r=-0.52, p=0.006) and 24-h proteinuria levels (r=-0.86, p<0.0001). Conclusion AKI had the long-term negative effects on the quantitative and qualitative characteristics of ODB in fecal microbiota in rats. Moreover, the results of our study confirmed an increasing trend in total fecal ODA according to the aggravation of renal interstitial fibrosis in rats.


2019 ◽  
pp. 11-20
Author(s):  
David P. Basile ◽  
Babu J. Padanilam

Acute kidney injury represents a significant clinical disorder associated with a rapid loss of renal function following a variety of potential insults. This chapter reviews multiple issues related to the pathophysiology of AKI with an emphasis on studies from animal models. Early responses following kidney injury include impaired hemodynamic and bioenergetic responses. Reductions in renal ATP levels occur as a result of compromised fatty acid oxidation and impaired compensation by glycolysis. Sustained reductions in perfusion contribute to extension of AKI characterized by complex inflammatory and cellular injury responses, often leading to cell death. Concurrently, the kidney displays an elegant repair response, leading to successful recovery in most cases, characterized in part by epithelial cell growth, while maladaptive or incomplete recovery of tubules or capillaries can predispose the development of interstitial fibrosis and CKD progression.


Renal Failure ◽  
2015 ◽  
Vol 37 (9) ◽  
pp. 1514-1517 ◽  
Author(s):  
Lu-Fei Wang ◽  
Hao Wu ◽  
Yang Xu ◽  
Meng Deng ◽  
Xiang-Long Han ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liuyi Yang ◽  
Meng Wang ◽  
Yuan Zhou ◽  
Jing Yang ◽  
Chaoyang Ye ◽  
...  

Background. Renal interstitial fibrosis is a pathological manifestation of progression of chronic kidney disease induced by various factors. Shen Shuai II Recipe (SSR) has been used in clinical practice for more than 20 years, and clinical studies have confirmed that SSR significantly improves the renal function of patients with chronic kidney disease. However, the specific mechanisms underlying its efficacy require further research. This study aims to explore the influencing factors of renal interstitial fibrosis in the context of hypoxia via the IL-1β/c-Myc pathway and the potential molecular mechanisms of SSR intervention in vivo and in vitro. Methods. A rat model of chronic renal failure was developed by performing 5/6 (ablation/infarction, A/I) surgery on randomly selected, male Sprague Dawley rats. Thirty-six successfully modeled rats were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + SSR, and 5/6 (A/I) + losartan. Another 12 rats were used as the sham group. After 8 weeks of the corresponding intervention, renal function, liver function, and protein expression of renal-fibrosis-related factors, HIF-1α, IL-1β, and c-Myc, were detected. In vitro analysis was performed using hypoxia-induced rat renal tubular epithelial cells (NRK-52E) and IL-1β-stimulated rat renal interstitial fibroblasts (NRK-49F). IL-1β concentration in the culture medium and IL-1β protein expression in hypoxic NRK-52E treated with different concentrations of SSR were investigated. Furthermore, we also studied the changes in protein expression of c-Myc and fibrosis-related factors after c-Myc gene silencing in IL-1β-stimulated NRK-49F treated with SSR. Results. Shen Shuai II Recipe significantly reduced RIF and downregulated the expression of HIF-1α, c-Myc, and IL-1β proteins in 5/6 (A/I) rats with chronic renal failure. It also inhibited IL-1β secretion from NRK-52E induced by hypoxia, which in turn inhibited fibroblast activation mediated by the IL-1β/c-Myc pathway, and finally reduced the overproduction of the extracellular matrix. Conclusion. The renoprotective effects of SSR in rats with chronic renal failure may be related to its inhibition of hypoxia via the IL-1β/c-Myc pathway. Thus, SSR is a potentially effective drug for delaying the progression of renal interstitial fibrosis.


2020 ◽  
Vol 21 (15) ◽  
pp. 5490 ◽  
Author(s):  
Satoshi Washino ◽  
Keiko Hosohata ◽  
Tomoaki Miyagawa

Partial or complete obstruction of the urinary tract is a common and challenging urological condition caused by a variety of conditions, including ureteral calculi, ureteral pelvic junction obstruction, ureteral stricture, and malignant ureteral obstruction. The condition, which may develop in patients of any age, induces tubular and interstitial injury followed by inflammatory cell infiltration and interstitial fibrosis, eventually impairing renal function. The serum creatinine level is commonly used to evaluate global renal function but is not sensitive to early changes in the glomerular filtration rate and unilateral renal damage. Biomarkers of acute kidney injury are useful for the early detection and monitoring of kidney injury induced by upper urinary tract obstruction. These markers include levels of neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemotactic protein-1, kidney injury molecule 1, N-acetyl-b-D-glucosaminidase, and vanin-1 in the urine and serum NGAL and cystatin C concentrations. This review summarizes the pathophysiology of kidney injury caused by upper urinary tract obstruction, the roles played by emerging biomarkers of obstructive nephropathy, the mechanisms involved, and the clinical utility and limitations of the biomarkers.


Epigenomes ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 2
Author(s):  
Ruben G. de Bruin ◽  
Gillian Vogel ◽  
Jurrien Prins ◽  
Jacques M. J. G. Duijs ◽  
Roel Bijkerk ◽  
...  

In the pathophysiologic setting of acute and chronic kidney injury, the excessive activation and recruitment of blood-borne monocytes prompts their differentiation into inflammatory macrophages, a process that leads to progressive glomerulosclerosis and interstitial fibrosis. Importantly, this differentiation of monocytes into macrophages requires the meticulous coordination of gene expression at both the transcriptional and post-transcriptional level. The transcriptomes of these cells are ultimately determined by RNA-binding proteins such as QUAKING (QKI), that define their pre-mRNA splicing and mRNA transcript patterns. Using two mouse models, namely (1) quaking viable mice (qkv) and (2) the conditional deletion in the myeloid cell lineage using the lysozyme 2-Cre (QKIFL/FL;LysM-Cre mice), we demonstrate that the abrogation of QKI expression in the myeloid cell lineage reduces macrophage infiltration following kidney injury induced by unilateral urethral obstruction (UUO). The qkv and QKIFL/FL;LysM-Cre mice both showed significant diminished interstitial collagen deposition and fibrosis in the UUO-damaged kidney, as compared to wild-type littermates. We show that macrophages isolated from QKIFL/FL;LysM-Cre mice are associated with defects in pre-mRNA splicing. Our findings demonstrate that reduced expression of the alternative splice regulator QKI in the cells of myeloid lineage attenuates renal interstitial fibrosis, suggesting that inhibition of this splice regulator may be of therapeutic value for certain kidney diseases.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Feng Yang ◽  
Ming Wu ◽  
Chaoyang Ye

Abstract Background and Aims Mammalian Protein Arginine Methyltransferase 3 (PRMT3) catalyzes the monomethylation and dimethylation of the Arginine residues of proteins. The role of PRMT3 in renal fibrosis is currently unknown. We aimed to study the role of PRMT3 in renal fibrosis and explored its underlining mechanisms. Method Sham or Unilateral Ureter Obstruction (UUO) operation was performed in Prmt3 wild-type (WT), heterozygous (Het) and homozygous (Homo) mutant mice, which were sacrificed at day 14. A single dose of aristolochic acid (5mg/kg) was injected in WT or HE mice, which was sacrificed at day 42. Results A strong interstitial fibrosis was observed in WT UUO mice as shown by Masson staining, and heterozygous or homozygous deletion of Prmt3 gene further enhanced interstitial fibrosis in mouse kidneys. The expression of collagen-I in mouse kidneys were analyzed by Western blotting. UUO operation increased the expression of collagen-I in WT mouse kidneys, which were further increased by genetic deletion of Prmt3 gene in a dose-dependent manner. A mild renal interstitial fibrosis was observed in AAN mice, which was enhanced by heterozygous deletion of Prmt3 gene. Western blot analysis showed that aristolochic acid increased the expression of collagen-I in WT mice, which was further increased in Prmt3 Het mutant mice. Mechanismly, asymmetric dimethylarginine levels were elevated in UUO or AAN mouse kidneys as compared with its controls as shown by immnohistochemistry staining or ELISA. Renal ADMA levels were not elevated in Prmt3 mutant UUO or AAN mice. Moreover, renal injection of ADMA in UUO kidneys blocked the enhanced renal interstitial fibrosis in Prmt3 Het mutant mice as shown by Masson staining and Western blot analysis of collagen-I. Conclusion Prmt3 inhibits renal interstitial fibrosis through enhancing renal ADMA levels.


2015 ◽  
Vol 42 (5) ◽  
pp. 369-378 ◽  
Author(s):  
Jing Cao ◽  
Yong Li ◽  
Yingxian Peng ◽  
Yaqian Zhang ◽  
Huanhuan Li ◽  
...  

Background: Renal interstitial fibrosis (RIF) is a common pathology associated with end-stage renal diseases. The activation of bone morphogenetic protein-7 (BMP-7)-Smad1/5/8 pathway seems to alleviate RIF. Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific BMPs antagonist, is associated with the development and prognosis of several renal diseases. Febuxostat is a xanthine oxidase inhibitor that can attenuate the renal dysfunction of patients. The purpose of this study was to investigate the effects of febuxostat on renal fibrosis and to clarify the mechanisms underlying these effects. Methods: Rats were randomly divided into 6 groups termed a sham-operated group, a unilateral ureteral obstruction (UUO) group, 3 doses of febuxostat groups (low, intermediate and high doses) and a sham group treated with high-dose febuxostat. After 14 days, renal function, relative kidney weight, accumulation of glycogen and collagens were examined by different methods. Expression of α-SMA, transforming growth factor-β1 (TGF-β1), BMP-7 and USAG-1 was detected by western blotting and RT-PCR, respectively. The phosphorylation level of Smad1/5/8 was also quantified by western blotting. Results: The renal function was declined, and large amounts of glycogen and collagens were deposited in the kidneys of UUO rats compared with the rats in the sham group. Besides, expression of α-SMA and USAG-1 in these kidneys was elevated, and the TGF-β1 was also activated, while the BMP-7-Smad1/5/8 pathway was inhibited. Febuxostat reversed the changes stated earlier, exhibiting protective effects on RIF induced by UUO. Conclusion: Febuxostat was able to attenuate RIF caused by UUO, which was associated with the activation of BMP-7-Smad1/5/8 pathway and the inhibition of USAG-1 expression in the kidneys of UUO rats.


Sign in / Sign up

Export Citation Format

Share Document