scholarly journals Selective Wnt/β-Catenin Pathway Activation Concomitant With Sustained Overexpression of miR-21 is Responsible for Aristolochic Acid-Induced AKI-to-CKD Transition

2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Kuang ◽  
Sheng Wu ◽  
Ning Xue ◽  
Xiaoyan Wang ◽  
Xiaoqianq Ding ◽  
...  

Acute kidney injury (AKI) is increasingly recognized as a cumulative risk factor for chronic kidney disease (CKD) progression. However, the underlying mechanisms remain unclear. Using an aristolochic acid (AA)-induced mouse model of AKI-to-CKD transition, we found that the development of tubulointerstitial fibrosis following AKI was accompanied with a strong activation of miR-21 and canonical Wnt signaling, whereas inhibition of miR-21 or selective silencing of Wnt ligands partially attenuated AKI-to-CKD transition. To explore the interaction between miR-21 and Wnt/β-catenin signaling, we examined the effects of genetic absence or pharmacologic inhibition of miR-21 on Wnt/β-catenin pathway expression. In miR-21−/− mice and in wild-type mice treated with anti-miR21 oligos, Wnt1 and Wnt4 canonical signaling in the renal tissue was significantly reduced, with partial reversal of renal interstitial fibrosis. Although the renal abundance of miR-21 remained unchanged after inhibition or activation of Wnt/β-catenin signaling, early intervention with ICG-001, a β-catenin inhibitor, significantly attenuated renal interstitial fibrosis. Moreover, early (within 24 h), but not late β-catenin inhibition after AA administration attenuated AA-induced apoptosis and inflammation. In conclusion, inhibition of miR-21 or β-catenin signaling may be an effective approach to prevent AKI-to-CKD progression.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanjun Yang ◽  
Xiaodong Geng ◽  
Kun Chi ◽  
Chao Liu ◽  
Ran Liu ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) have been reported to promote regeneration in both subjects with acute kidney injury (AKI) and chronic kidney disease (CKD), but their efficacy remains limited, probably because most of the cells accumulate in the lungs, liver, and spleen after an intravenous infusion. Therefore, ultrasound-guided administration of MSCs represents a possible approach to solve this problem. The greater omentum is used to promote cell survival due to its rich vasculature. We hypothesized that ultrasound-guided administration of MSCs combined with greater omentum might be more curative than currently available approaches. Methods In this study, we established an aristolochic acid nephropathy (AAN) model by intraperitoneally administering aristolochic acid I sodium salt (AA-I) at a dose of 5 mg/kg body weight on alternate days for 4 weeks. Subsequently, a laparotomy was performed, and the left kidney from which the capsule had been removed was wrapped with the greater omentum. A dose of 2 × 107 MSCs was injected into the space between the greater omentum and the left kidney. Equal amounts of MSCs were administered under ultrasound guidance every second week for a total of 4 treatments. Mice were sacrificed 4 weeks after surgery. Serum creatinine and blood urea levels were measured to assess renal function. qPCR, Western blot, and histological analyses were conducted to further investigate the therapeutic mechanism of MSCs. Results Ultrasound-guided injection of MSCs into the greater omentum that surrounds the kidney enriched cells in the kidney region for up to 5 days. Renal function tests indicated that MSCs improved renal function to a great extent, as reflected by decreased blood urea nitrogen and serum creatinine levels. In addition, histological analyses showed that MSCs noticeably attenuated kidney injury, as evidenced by the amelioration of tubular necrosis and peritubular interstitial fibrosis. Mitigation of renal interstitial fibrosis was further confirmed by immunohistochemistry, qPCR, and western blotting after MSC treatment. Moreover, immunofluorescence staining revealed that MSCs alleviated inflammatory responses by increasing the counts of CD206+ cells and decreasing the counts of CD68+ cells. MSC migration was initiated in response to AA-I-treated renal epithelial cells in an in vitro migration assay. Conclusions These findings suggested that administration of MSCs into the cavity formed by the injured kidney and the greater omentum under ultrasound guidance improved renal function, attenuated kidney injury, and mitigated renal interstitial fibrosis and inflammatory responses. Thus, this approach might be a safe and effective therapy for CKD.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Natalia Stepanova ◽  
Ganna Tolstanova ◽  
Valentyn Nepomnyashchii ◽  
Iryna Akulenko ◽  
Svitlana Savchenko ◽  
...  

Abstract Background and Aims Gut microbiota is considered an important factor affecting oxalate handling in the intestine. It has been demonstrated that intestinal oxalate secretion provides a complementary route of excretion, and it becomes more evident when kidney function declines. A diversity of gut oxalate-degrading bacteria (ODB) has been hypothesized to play a role in this process. However, there is a general lack of research on the long-term effects of acute kidney injury (AKI) on ODB and their total oxalate-degrading activity (ODA) in fecal microbiota. In this study, we evaluated whether renal dysfunction could affect intestinal ODB and their total ODA in a rat model of glycerol-induced AKI. Method The Male Wistar rats (200-300 g, n=20) on oxalate-free diet were randomly divided into 2 groups. After 24-h of water deprivation, Group 1 (n=10) received an intramuscular injection of 50% glycerol (10 ml/kg of body weight), and Group 2 (n=10) served as control. The numbers of ODB (incubated in a highly selective Oxalate Medium and determined using culture method) and total fecal ODA were measured after injection on days 7 and 70. The method of redoximetric titration with a KMnO4 solution was adopted to evaluate total ODA in fecal microbiota; the results were expressed as % of oxalate degradation per 0.01 g of feces. Renal injury was assessed by histopathological examination, serum creatinine and daily proteinuria levels after removing the animals from the experiment on day 70. Cortical interstitial fibrosis was measured by computerized image analysis on sections stained with picrosirius red. The median (Me) and the interquartile ranges (Q25; Q75) were calculated and compared using the nonparametric Mann-Whitney test. The Spearman correlation coefficient was used to evaluate association between the examined parameters. Results The obtained results demonstrated: 1) after glycerol injection on day 7, no differences were found in the numbers of ODB and total fecal ODA between the experimental and control groups: 5.9 (5.4-6.0) vs 6.0 (5.4-6.4) CFU/g, p=0.65 and 2.0 (0.1-5.0) vs 2.5 (2.0-9.0) %/0.01g, p=0.24, respectively; 2) after AKI initiation on day 70, the numbers of ODB and total fecal ODA were significantly lower in Group I compared with control Group II (Fig. 1); 3) the higher percentage of renal interstitial fibrosis was, the higher total fecal ODA occurred in the experimental rats (Fig. 2). In addition, the number of ODB in feces in Group 1 had an inverse association with serum creatinine (r=-0.52, p=0.006) and 24-h proteinuria levels (r=-0.86, p<0.0001). Conclusion AKI had the long-term negative effects on the quantitative and qualitative characteristics of ODB in fecal microbiota in rats. Moreover, the results of our study confirmed an increasing trend in total fecal ODA according to the aggravation of renal interstitial fibrosis in rats.


2020 ◽  
Vol 31 (12) ◽  
pp. 2773-2792
Author(s):  
Markus Sellmayr ◽  
Moritz Roman Hernandez Petzsche ◽  
Qiuyue Ma ◽  
Nils Krüger ◽  
Helen Liapis ◽  
...  

BackgroundThe roles of asymptomatic hyperuricemia or uric acid (UA) crystals in CKD progression are unknown. Hypotheses to explain links between UA deposition and progression of CKD include that (1) asymptomatic hyperuricemia does not promote CKD progression unless UA crystallizes in the kidney; (2) UA crystal granulomas may form due to pre-existing CKD; and (3) proinflammatory granuloma-related M1-like macrophages may drive UA crystal-induced CKD progression.MethodsMALDI-FTICR mass spectrometry, immunohistochemistry, 3D confocal microscopy, and flow cytometry were used to characterize a novel mouse model of hyperuricemia and chronic UA crystal nephropathy with granulomatous nephritis. Interventional studies probed the role of crystal-induced inflammation and macrophages in the pathology of progressive CKD.ResultsAsymptomatic hyperuricemia alone did not cause CKD or drive the progression of aristolochic acid I-induced CKD. Only hyperuricemia with UA crystalluria due to urinary acidification caused tubular obstruction, inflammation, and interstitial fibrosis. UA crystal granulomas surrounded by proinflammatory M1-like macrophages developed late in this process of chronic UA crystal nephropathy and contributed to the progression of pre-existing CKD. Suppressing M1-like macrophages with adenosine attenuated granulomatous nephritis and the progressive decline in GFR. In contrast, inhibiting the JAK/STAT inflammatory pathway with tofacitinib was not renoprotective.ConclusionsAsymptomatic hyperuricemia does not affect CKD progression unless UA crystallizes in the kidney. UA crystal granulomas develop late in chronic UA crystal nephropathy and contribute to CKD progression because UA crystals trigger M1-like macrophage-related interstitial inflammation and fibrosis. Targeting proinflammatory macrophages, but not JAK/STAT signaling, can attenuate granulomatous interstitial nephritis.


Renal Failure ◽  
2015 ◽  
Vol 37 (9) ◽  
pp. 1514-1517 ◽  
Author(s):  
Lu-Fei Wang ◽  
Hao Wu ◽  
Yang Xu ◽  
Meng Deng ◽  
Xiang-Long Han ◽  
...  

2020 ◽  
Author(s):  
Qi Huang ◽  
Dong Liu ◽  
Shaoyuan Cui ◽  
Zhong Yin ◽  
Zan Huang ◽  
...  

Abstract Background: youthful blood environment was shown to decelerate the aging process of kidney and to attenuate senile renal fibrosis in a young-old parabiotic animal model; in addition, we identified a stem cell factor (SCF) that is closely linked with the process. To further investigate the effect of youthful blood environment on renal interstitial fibrosis and the underlying mechanisms, we bred SCF receptor c-Kit gene loss-of-function Wps/Wps mice and established a combination mice model that was subjected to unilateral ureteral obstructive (UUO) and parabiotic surgeries.Methods: Parabiotic mice were divided into isochronic parabiotic (young-young, Y-IP and old-old, O-IP) and heterochronic parabiotic (young-old, HP) groups. UUO surgery was performed in one of the parabiotic pairs in the IP group (Y-IPuuo and O-IPuuo) and in the elderly mice in the HP group (O-HPuuo). In order to study the role of SCF/c-kit on renal interstitial fibrosis, UUO surgery was performed in wildtype (WT) and Wps/Wps mice. Results: Fourteen days after UUO surgery, the kidney interstitial fibrosis area, kidney function, and the expressions of SCF/c-Kit, pNF-κB, and fibrosis-related proteins in the O-HPuuo group were significantly lower than those in the Ouuo and O-IPuuo groups. Compared with wildtype UUO mice, the expressions of pNF-κB and fibrosis-related proteins, kidney interstitial fibrosis area, and the kidney function were all significantly decreased in Wps/Wps UUO mice.Conclusions: Youthful blood environment downregulated the expressions of SCF/c-Kit in elderly UUO mice, and ameliorated UUO-induced kidney fibrosis and function loss, which may be mediated via the NF-κB pathway.


Epigenomes ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 2
Author(s):  
Ruben G. de Bruin ◽  
Gillian Vogel ◽  
Jurrien Prins ◽  
Jacques M. J. G. Duijs ◽  
Roel Bijkerk ◽  
...  

In the pathophysiologic setting of acute and chronic kidney injury, the excessive activation and recruitment of blood-borne monocytes prompts their differentiation into inflammatory macrophages, a process that leads to progressive glomerulosclerosis and interstitial fibrosis. Importantly, this differentiation of monocytes into macrophages requires the meticulous coordination of gene expression at both the transcriptional and post-transcriptional level. The transcriptomes of these cells are ultimately determined by RNA-binding proteins such as QUAKING (QKI), that define their pre-mRNA splicing and mRNA transcript patterns. Using two mouse models, namely (1) quaking viable mice (qkv) and (2) the conditional deletion in the myeloid cell lineage using the lysozyme 2-Cre (QKIFL/FL;LysM-Cre mice), we demonstrate that the abrogation of QKI expression in the myeloid cell lineage reduces macrophage infiltration following kidney injury induced by unilateral urethral obstruction (UUO). The qkv and QKIFL/FL;LysM-Cre mice both showed significant diminished interstitial collagen deposition and fibrosis in the UUO-damaged kidney, as compared to wild-type littermates. We show that macrophages isolated from QKIFL/FL;LysM-Cre mice are associated with defects in pre-mRNA splicing. Our findings demonstrate that reduced expression of the alternative splice regulator QKI in the cells of myeloid lineage attenuates renal interstitial fibrosis, suggesting that inhibition of this splice regulator may be of therapeutic value for certain kidney diseases.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Feng Yang ◽  
Ming Wu ◽  
Chaoyang Ye

Abstract Background and Aims Mammalian Protein Arginine Methyltransferase 3 (PRMT3) catalyzes the monomethylation and dimethylation of the Arginine residues of proteins. The role of PRMT3 in renal fibrosis is currently unknown. We aimed to study the role of PRMT3 in renal fibrosis and explored its underlining mechanisms. Method Sham or Unilateral Ureter Obstruction (UUO) operation was performed in Prmt3 wild-type (WT), heterozygous (Het) and homozygous (Homo) mutant mice, which were sacrificed at day 14. A single dose of aristolochic acid (5mg/kg) was injected in WT or HE mice, which was sacrificed at day 42. Results A strong interstitial fibrosis was observed in WT UUO mice as shown by Masson staining, and heterozygous or homozygous deletion of Prmt3 gene further enhanced interstitial fibrosis in mouse kidneys. The expression of collagen-I in mouse kidneys were analyzed by Western blotting. UUO operation increased the expression of collagen-I in WT mouse kidneys, which were further increased by genetic deletion of Prmt3 gene in a dose-dependent manner. A mild renal interstitial fibrosis was observed in AAN mice, which was enhanced by heterozygous deletion of Prmt3 gene. Western blot analysis showed that aristolochic acid increased the expression of collagen-I in WT mice, which was further increased in Prmt3 Het mutant mice. Mechanismly, asymmetric dimethylarginine levels were elevated in UUO or AAN mouse kidneys as compared with its controls as shown by immnohistochemistry staining or ELISA. Renal ADMA levels were not elevated in Prmt3 mutant UUO or AAN mice. Moreover, renal injection of ADMA in UUO kidneys blocked the enhanced renal interstitial fibrosis in Prmt3 Het mutant mice as shown by Masson staining and Western blot analysis of collagen-I. Conclusion Prmt3 inhibits renal interstitial fibrosis through enhancing renal ADMA levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yundou Wu ◽  
Peijun Song ◽  
Xinke Yuan ◽  
Dayong Li

Objective. To establish a rat model of alcoholic kidney injury and detect the expression of TIMP-1/MMP-24 in the kidneys of rats with alcoholic kidney injury at the molecular pathological level, so as to explore the mechanism of alcohol abuse leading to kidney injury and renal interstitial fibrosis as well as the alleviation of alcohol-induced kidney injury and inhibition of renal interstitial fibrosis by dapagliflozin. Methods. 48 male rats were randomly divided into 4 groups: control group, alcohol group, alcohol + dapagliflozin group, and alcohol + losartan group, each with 12 rats. Different drugs were administered by gavage for modeling and treatment. Six days later, the rats were sacrificed, blood was collected from the heart to separate the serum, and the blood creatinine (Scr) and urea nitrogen (BUN) contents were detected biochemically. After blood collection, the kidney tissue was taken and fixed in10% neutral formalin. The expression of renal tissue inflammatory factors (CRP, IL-6, and TNF-α) and renal fibrosis indexes (LN, HA, and TGF-β1) were detected; MMP-24 and TIMP-1 in the kidney tissue of rats in different treatment groups were detected, and Smad3 expression was also detected. Results. After treatment, the general condition of the alcohol + dapagliflozin group and the alcohol + losartan group improved to different degrees. The weight first decreased and then gradually increased over time. There was no statistical difference in the weight change between the two groups; Compared with the control group, the Scr level, BUN content, renal index, inflammatory factors, and renal fibrosis indexes in the alcohol group were significantly increased ( P < 0.05 ); after 6 weeks of treatment, in the alcohol + dapagliflozin group and alcohol + losartan group, Scr level, BUN content, kidney index, inflammatory factors, and renal fibrosis indexes were significantly decreased ( P < 0.05 ); the expression of MMP-24 in the kidney tissue of the control group was upregulated, and the expression of TIMP-1 and Smad3 was downregulated; MMP-24 expression was downregulated, and TIMP-1 and Smad3 expression was significantly upregulated ( P < 0.05 ) in the rats of the alcohol group. After dapagliflozin and losartan treatment, MMP-24 expression gradually increased and TIMP-1 and Smad3 expression gradually decreased ( P < 0.05 ). Conclusion. Long-term large-scale alcohol intake can cause kidney tissue damage and fibrotic lesions. The expression of fibrotic cytokines such as TIMP-1 and Smad3 will increase, and the expression of MMP-24 will be decreased. However, dapagliflozin and losartan have certain therapeutic effects on the abovementioned lesions. The mechanism may be downregulating TIMP-1 and Smad3 and upregulating the expression of MMP-24 and other cytokines in the kidney.


Sign in / Sign up

Export Citation Format

Share Document