scholarly journals Design, development, and evaluation of the efficacy of a nucleic acid-free version of a bacterial ghost candidate vaccine against avian pathogenic E. coli (APEC) O78:K80 serotype

2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Safoura Soleymani ◽  
Amin Tavassoli ◽  
Gholamreza Hashemi Tabar ◽  
Gholam Ali Kalidari ◽  
Hesam Dehghani

AbstractOne of the major bacterial infectious diseases in the poultry industry is avian pathogenic Escherichia coli (APEC), which causes colibacillosis in chickens. To develop a novel nucleic acid-free bacterial ghost (BG) vaccine against the O78:K80 serotype of APEC, in this study we constructed a plasmid that harbored E-lysis and S nuclease (SNUC). Following the expression, the O78:K80 bacteria lost all of their cytoplasmic content and nucleic acids by enzymatic digestion. The functionality of these two proteins in the production procedure of bacterial ghosts was confirmed by monitoring the number of colonies, scanning electron microscopy imaging, gel electrophoresis of genomic DNA, and qPCR on the plasmid content of bacterial ghosts. The protective efficacy of the ghost vaccine generated from O78:K80 serotype of APEC was tested in chickens by injection and inhalation routes and compared with that in chickens that received the injection of a killed vaccine. The O78:K80 BG vaccine candidate, used as injection and inhalation, in comparison with the killed vaccine, triggered higher proinflammatory cytokine expression including IL-6, IL-1β, and TNFSF15; a higher level of antibody-dependent humoral (IgY and IgA) and cellular immune responses (IFNγ and lymphocyte proliferation); and lower lesion scores. According to the results of this study, we suggest that the bacterial ghost technology has the potential to be applied for the development of novel vaccines against avian colibacillosis. This technology provides an effective and reliable approach to make multivalent vaccines for more prevalent APEC strains involved in the establishment of this infectious disease in the poultry industry.

1984 ◽  
Vol 12 (1Part1) ◽  
pp. 347-366 ◽  
Author(s):  
Gary J. Quigley ◽  
Lee Gehrke ◽  
David A. Roth ◽  
Philip E. Auron

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-Hua Li ◽  
Guo-Zhen Zhao ◽  
Long-Xin Qiu ◽  
Ai-Ling Dai ◽  
Wang-Wei Wu ◽  
...  

Haemophilus parasuiscan cause Glässer’s disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer’s disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage ofH. parasuis(LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acuteH. parasuisinfection in piglets after inactivation. Following challenging withH. parasuis,only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer’s disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4+and CD8+T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γin sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection againstH. parasuisinfection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain ofH. parasuiscould serve as a potential vaccine candidate to prevent the prevalence ofH. parasuisin Fujian province, China.


2013 ◽  
Vol 88 (4) ◽  
pp. 402-410 ◽  
Author(s):  
P.R. Prince ◽  
J. Madhumathi ◽  
G. Anugraha ◽  
P.J. Jeyaprita ◽  
M.V.R. Reddy ◽  
...  

AbstractHelminth parasites use antioxidant defence strategies for survival during oxidative stress due to free radicals in the host. Accordingly, tissue-dwelling filarial parasites counteract host responses by releasing a number of antioxidants. Targeting these redox regulation proteins together, would facilitate effective parasite clearance. Here, we report the combined effect of protective immune responses trigged by recombinant Wuchereria bancrofti thioredoxin (WbTRX) and thioredoxin peroxidase (WbTPX) in an experimental filarial model. The expression of WbTRX and WbTPX in different stages of the parasite and their cross-reactivity were analysed by enzyme-linked immunosorbent assay (ELISA). The immunogenicity of recombinant proteins and their protective efficacy were studied in animal models when immunized in single or cocktail mode. The antigens showed cross-reactive epitopes and induced high humoral and cellular immune responses in mice. Further, parasite challenge against Brugia malayi L3 larvae in Mastomyscoucha conferred significant protection of 57% and 62% against WbTRX and WbTPX respectively. The efficacy of L3 clearance was significantly higher (71%) (P <  0.001) when the antigens were immunized together, showing a synergistic effect in multiple-mode vaccination. Hence, the study suggests WbTRX and WbTPX to be attractive vaccine candidates when immunized together and provides a tandem block for parasite elimination in the control of lymphatic filariasis.


2004 ◽  
Vol 85 (8) ◽  
pp. 2407-2419 ◽  
Author(s):  
B. Mäkitalo ◽  
P. Lundholm ◽  
J. Hinkula ◽  
C. Nilsson ◽  
K. Karlén ◽  
...  

The immunogenicity and protective efficacy of a DNA and recombinant modified vaccinia Ankara (MVA) vaccine administered by two different routes were investigated. DNA expressing HIV-1 IIIB env, gag, RT, rev, tat and nef, and MVA expressing HIV-1 IIIB nef, tat and rev and simian immunodeficiency virus (SIV) macJ5 gag/pol and vaccinia HIV-1 env, were used as immunogens. Four cynomolgus macaques received DNA intramuscularly (i.m.) at month 0 and intrarectally (i.r.) and intra-orally (i.o.) at 2 months, followed by MVA i.m. at 4 months and i.r. and i.o. at 8 months. Another group of four monkeys received the same immunogens but only i.m.. Overall, stronger cellular immune responses measured by ELISPOT and T-cell proliferation assay were detected in the group primed i.m. and boosted mucosally. Following homologous intravenous simian-human immunodeficiency virus (SHIV) challenge, one of eight vaccinated animals was completely protected. This monkey, immunized i.m. and i.r.+i.o., exhibited the highest levels of HIV Env, Nef and Tat antibodies, high HIV Tat cytotoxic T-lymphocyte activity and T-lymphocyte proliferative responses to HIV Env. Four weeks post-challenge none of the monkeys immunized i.m. and i.r.+i.o., and only two out of four animals immunized i.m., demonstrated detectable plasma viral RNA levels. In contrast, all eight control animals had demonstrable plasma viral RNA levels 4 weeks post-challenge. Thus, stronger cellular immune responses and reduction of challenge virus burden were demonstrated in animals immunized i.m. as well as mucosally, compared with animals immunized i.m. only. The breadth and magnitude of the induced immune responses correlated with protective efficacy.


2021 ◽  
Author(s):  
Margherita Rosati ◽  
Mahesh Agarwal ◽  
Xintao Hu ◽  
Santhi Devasundaram ◽  
Dimitris Stellas ◽  
...  

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.


2021 ◽  
Author(s):  
C. Sabrina Tan ◽  
Ai-ris Y. Collier ◽  
Jinyan Liu ◽  
Jingyou Yu ◽  
Huahua Wan ◽  
...  

ABSTRACTPrevious studies have reported that a third dose of the BNT162b2 (Pfizer) COVID-19 vaccine increased antibody titers and protective efficacy. Here we compare humoral and cellular immune responses in 65 individuals who were vaccinated with the BNT162b2 vaccine and were boosted after at least 6 months with either Ad26.COV2.S (Johnson & Johnson; N=41) or BNT162b2 (Pfizer; N=24).


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1273
Author(s):  
Kirill Vasilyev ◽  
Anna-Polina Shurygina ◽  
Natalia Zabolotnykh ◽  
Mariia Sergeeva ◽  
Ekaterina Romanovskaya-Romanko ◽  
...  

BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document