scholarly journals Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Hadis Rahmatelahi ◽  
Mansour El-Matbouli ◽  
Simon Menanteau-Ledouble

AbstractGram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs.

2012 ◽  
Vol 56 (11) ◽  
pp. 5433-5441 ◽  
Author(s):  
Miles C. Duncan ◽  
Roger G. Linington ◽  
Victoria Auerbuch

ABSTRACTThe recent and dramatic rise of antibiotic resistance among bacterial pathogens underlies the fear that standard treatments for infectious disease will soon be largely ineffective. Resistance has evolved against nearly every clinically used antibiotic, and in the near future, we may be hard-pressed to treat bacterial infections previously conquered by “magic bullet” drugs. While traditional antibiotics kill or slow bacterial growth, an important emerging strategy to combat pathogens seeks to block the ability of bacteria to harm the host by inhibiting bacterial virulence factors. One such virulence factor, the type three secretion system (T3SS), is found in over two dozen Gram-negative pathogens and functions by injecting effector proteins directly into the cytosol of host cells. Without T3SSs, many pathogenic bacteria are unable to cause disease, making the T3SS an attractive target for novel antimicrobial drugs. Interdisciplinary efforts between chemists and microbiologists have yielded several T3SS inhibitors, including the relatively well-studied salicylidene acylhydrazides. This review highlights the discovery and characterization of T3SS inhibitors in the primary literature over the past 10 years and discusses the future of these drugs as both research tools and a new class of therapeutic agents.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Melissa M. Kendall

ABSTRACT The type three secretion system (T3SS) is critical for the virulence of diverse bacterial pathogens. Pathogens use the T3SS to deliver effector proteins into host cells and manipulate host signaling pathways. The prevailing mechanism is that effectors translocate from inside the T3SS directly into the host cell. Recent studies reveal an alternative mechanism of effector translocation, in which an effector protein located outside the bacterial cell relies on the T3SS for delivery into host cells. Tejeda-Dominguez et al. (F. Tejeda-Dominguez, J. Huerta-Cantillo, L. Chavez-Dueñas, and F. Navarro-Garcia, mBio 8:e00184-17, 2017, https://doi.org/10.1128/mBio.00184-17 !) demonstrate that the EspC effector of enteropathogenic Escherichia coli is translocated by binding to the outside of the T3SS and subsequently gains access to the host cell cytoplasm through the T3SS pore embedded within the host cell membrane. This work reveals a novel mechanism of translocation that is likely relevant for a variety of other pathogens that use the T3SS as part of their virulence arsenal.


2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Josh S. Sharp ◽  
Arne Rietsch ◽  
Simon L. Dove

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen that employs a type III secretion system (T3SS) to inject effector proteins into host cells. Using a protein depletion system, we show that the endoribonuclease RNase E positively regulates expression of the T3SS genes. We also present evidence that RNase E antagonizes the expression of genes of the type VI secretion system and limits biofilm production in P. aeruginosa. Thus, RNase E, which is thought to be the principal endoribonuclease involved in the initiation of RNA degradation in P. aeruginosa, plays a key role in controlling the production of factors involved in both acute and chronic stages of infection. Although the posttranscriptional regulator RsmA is also known to positively regulate expression of the T3SS genes, we find that RNase E does not appreciably influence the abundance of RsmA in P. aeruginosa. Moreover, we show that RNase E still exerts its effects on T3SS gene expression in cells lacking all four of the key small regulatory RNAs that function by sequestering RsmA. IMPORTANCE The type III secretion system (T3SS) is a protein complex produced by many Gram-negative pathogens. It is capable of injecting effector proteins into host cells that can manipulate cell metabolism and have toxic effects. Understanding how the T3SS is regulated is important in understanding the pathogenesis of bacteria with such systems. Here, we show that RNase E, which is typically thought of as a global regulator of RNA stability, plays a role in regulating the T3SS in Pseudomonas aeruginosa. Depleting RNase E results in the loss of T3SS gene expression as well as a concomitant increase in biofilm formation. These observations are reminiscent of the phenotypes associated with the loss of activity of the posttranscriptional regulator RsmA. However, RNase E-mediated regulation of these systems does not involve changes in the abundance of RsmA and is independent of the known small regulatory RNAs that modulate RsmA activity.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Netanel Elbaz ◽  
Yaakov Socol ◽  
Naama Katsowich ◽  
Ilan Rosenshine

ABSTRACT The transition from a planktonic lifestyle to a host-attached state is often critical for bacterial virulence. Upon attachment to host cells, enteropathogenic Escherichia coli (EPEC) employs a type III secretion system (T3SS) to inject into the host cells ∼20 effector proteins, including Tir. CesT, which is encoded from the same operon downstream of tir, is a Tir-bound chaperone that facilitates Tir translocation. Upon Tir translocation, the liberated CesT remains in the bacterial cytoplasm and antagonizes the posttranscriptional regulator CsrA, thus eliciting global regulation in the infecting pathogen. Importantly, tight control of the Tir/CesT ratio is vital, since an uncontrolled surge in free CesT levels may repress CsrA in an untimely manner, thus abrogating colonization. We investigated how fluctuations in Tir translation affect the regulation of this ratio. By creating mutations that cause the premature termination of Tir translation, we revealed that the untranslated tir mRNA becomes highly unstable, resulting in a rapid drop in cesT mRNA levels and, thus, CesT levels. This mechanism couples Tir and CesT levels to ensure a stable Tir/CesT ratio. Our results expose an additional level of regulation that enhances the efficacy of the initial interaction of EPEC with the host cell, providing a better understanding of the bacterial switch from the planktonic to the cell-adherent lifestyle. IMPORTANCE Host colonization by extracellular pathogens often entails the transition from a planktonic lifestyle to a host-attached state. Enteropathogenic E. coli (EPEC), a Gram-negative pathogen, attaches to the intestinal epithelium of the host and employs a type III secretion system (T3SS) to inject effector proteins into the cytoplasm of infected cells. The most abundant effector protein injected is Tir, whose translocation is dependent on the Tir-bound chaperon CesT. Upon Tir injection, the liberated CesT binds to and inhibits the posttranscriptional regulator CsrA, resulting in reprogramming of gene expression in the host-attached bacteria. Thus, adaptation to the host-attached state involves dynamic remodeling of EPEC gene expression, which is mediated by the relative levels of Tir and CesT. Fluctuating from the optimal Tir/CesT ratio results in a decrease in EPEC virulence. Here we elucidate a posttranscriptional circuit that prevents sharp variations from this ratio, thus improving host colonization.


2005 ◽  
Vol 73 (10) ◽  
pp. 6446-6457 ◽  
Author(s):  
Jian Sha ◽  
Lakshmi Pillai ◽  
Amin A. Fadl ◽  
Cristi L. Galindo ◽  
Tatiana E. Erova ◽  
...  

ABSTRACT Many gram-negative bacteria use a type III secretion system (TTSS) to deliver effector proteins into host cells. Here we report the characterization of a TTSS chromosomal operon from the diarrheal isolate SSU of Aeromonas hydrophila. We deleted the gene encoding Aeromonas outer membrane protein B (AopB), which is predicted to be involved in the formation of the TTSS translocon, from wild-type (WT) A. hydrophila as well as from a previously characterized cytotoxic enterotoxin gene (act)-minus strain of A. hydrophila, thus generating aopB and act/aopB isogenic mutants. The act gene encodes a type II-secreted cytotoxic enterotoxin (Act) that has hemolytic, cytotoxic, and enterotoxic activities and induces lethality in a mouse model. These isogenic mutants (aopB, act, and act/aopB) were highly attenuated in their ability to induce cytotoxicity in RAW 264.7 murine macrophages and HT-29 human colonic epithelial cells. The act/aopB mutant demonstrated the greatest reduction in cytotoxicity to cultured cells after 4 h of infection, as measured by the release of lactate dehydrogenase enzyme, and was avirulent in mice, with a 90% survival rate compared to that of animals infected with Act and AopB mutants, which caused 50 to 60% of the animals to die at a dose of three 50% lethal doses. In contrast, WT A. hydrophila killed 100% of the mice within 48 h. The effects of these mutations on cytotoxicity could be complemented with the native genes. Our studies further revealed that the production of lactones, which are involved in quorum sensing (QS), was decreased in the act (32%) and aopB (64%) mutants and was minimal (only 8%) in the act/aopB mutant, compared to that of WT A. hydrophila SSU. The effects of act and aopB gene deletions on lactone production could also be complemented with the native genes, indicating specific effects of Act and the TTSS on lactone production. Although recent studies with other bacteria have indicated TTSS regulation by QS, this is the first report describing a correlation between the TTSS and Act of A. hydrophila and the production of lactones.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
R. Christopher D. Furniss ◽  
Abigail Clements

ABSTRACTAttaching and effacing (AE) pathogens colonize the gut mucosa using a type three secretion system (T3SS) and a suite of effector proteins. The locus of enterocyte effacement (LEE) is the defining genetic feature of the AE pathogens, encoding the T3SS and the core effector proteins necessary for pathogenesis. Extensive research has revealed a complex regulatory network that senses and responds to a myriad of host- and microbiota-derived signals in the infected gut to control transcription of the LEE. These signals include microbiota-liberated sugars and metabolites in the gut lumen, molecular oxygen at the gut epithelium, and host hormones. Recent research has revealed that AE pathogens also recognize physical signals, such as attachment to the epithelium, and that the act of effector translocation remodels gene expression in infecting bacteria. In this review, we summarize our knowledge to date and present an integrated view of how chemical, geographical, and physical cues regulate the virulence program of AE pathogens during infection.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lezheng Yu ◽  
Fengjuan Liu ◽  
Yizhou Li ◽  
Jiesi Luo ◽  
Runyu Jing

Gram-negative bacteria can deliver secreted proteins (also known as secreted effectors) directly into host cells through type III secretion system (T3SS), type IV secretion system (T4SS), and type VI secretion system (T6SS) and cause various diseases. These secreted effectors are heavily involved in the interactions between bacteria and host cells, so their identification is crucial for the discovery and development of novel anti-bacterial drugs. It is currently challenging to accurately distinguish type III secreted effectors (T3SEs) and type IV secreted effectors (T4SEs) because neither T3SEs nor T4SEs contain N-terminal signal peptides, and some of these effectors have similar evolutionary conserved profiles and sequence motifs. To address this challenge, we develop a deep learning (DL) approach called DeepT3_4 to correctly classify T3SEs and T4SEs. We generate amino-acid character dictionary and sequence-based features extracted from effector proteins and subsequently implement these features into a hybrid model that integrates recurrent neural networks (RNNs) and deep neural networks (DNNs). After training the model, the hybrid neural network classifies secreted effectors into two different classes with an accuracy, F-value, and recall of over 80.0%. Our approach stands for the first DL approach for the classification of T3SEs and T4SEs, providing a promising supplementary tool for further secretome studies.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 713
Author(s):  
Arthur Bienvenu ◽  
Eric Martinez ◽  
Matteo Bonazzi

Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.


Sign in / Sign up

Export Citation Format

Share Document