scholarly journals Orchestration an extracellular lipase production from Aspergillus niger MYA 135: biomass morphology and fungal physiology

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hebe Natalia Salvatierra ◽  
Erika Lucía Regner ◽  
Mario Domingo Baigorí ◽  
Licia María Pera

AbstractThe impact of biomass morphology and culture conditions on fungal fermentation was widely reviewed in the literature. In this work, we presented three independent experiments in order to evaluate the influence of some of those input factors on a lipase production separately by using the Aspergillus niger MYA 135 and the two-stage fermentation technique. Regarding the culture modality, the biomass was pre-grown in a first reactor. Then, the washed mycelium was transferred to a second reactor to continue the study. Firstly, linear effects of fungal morphology and several physiological parameters on a lipase production were explored using the Plackett–Burman design. The dispersed fungal morphology was confirmed as a proper quality characteristic for producing an extracellular lipase activity. Concerning the impact of the carbon source on the biomass pre-growth, the sucrose (E = 9.923, p < 0.001) and the l-arabinose (E = 4.198, p = 0.009) presented positive and significant effects on the enzyme production. On the contrary, the supplementation of 0.05 g/L CaCl2 displayed a highly negative and significant effect on this process (E = − 7.390, p < 0.001). Secondly, the relationship between the enzyme production and the input variables N:C ratio, FeCl3 and olive oil was explored applying the central composite design. Among the model terms, the N:C ratio of the production medium had the most negative and significant influence on the enzyme synthesis. Thus, it was concluded that a low N:C ratio was preferable to increase its production. In addition, the bifunctional role of FeCl3 on this fungus was presented. Thirdly, a prove of concept assay was also discussed.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jia Jia ◽  
Xiaofeng Yang ◽  
Zhiliang Wu ◽  
Qian Zhang ◽  
Zhi Lin ◽  
...  

Lipase produced byAspergillus nigeris widely used in various industries. In this study, extracellular lipase production from an industrial producing strain ofA. nigerwas improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production.


2021 ◽  
Vol 900 (1) ◽  
pp. 012027
Author(s):  
S Nosalj ◽  
A Šimonovičová ◽  
H Vojtková

Abstract The research focused on the enzyme production/activity of sixteen Aspergillus niger strains isolated from different localities. The soils vary mainly in their pH value, which ranges from an ultra-acidic (< 3.5) to a very strongly alkaline (> 9.0) environment. Contamination caused by several centuries of mining activities at old mining sites persists at all the localities. The concentrations of toxic elements, such as As, Sb, Zn, Cu and Pb, very often exceed the common limit values. Presence of toxic elements in contaminated sites may affect microscopic fungi and cause changes of their physiology, including the production of different metabolites, such as enzymes. Production of esterase, cellulase, lipase and protease was investigated. Changes in physiological properties, such as the growth and enzymatic activity of the sixteen A. niger wild type strains, were determined. Esterase, cellulase and lipase activity was not determined in the sixteen strains tested. Considerable differences were recorded in the size of the colonies also within strains cultivated on the same nutrient medium. The control strain from locality Gabčíkovo formed the smallest colonies when tracking LA, EA and PA compared with the other strains. Lipase production was determined for several strains at different intensities and was highest in the strain isolated from the uncontaminated locality Gabčíkovo. The enzymatic activity of the other strains isolated from contaminated sites was very low. The achieved results confirmed the direct influence of environmental factors on the physiological properties of the studied strains of Aspergillus niger.


2016 ◽  
Vol 60 ◽  
pp. 18-29 ◽  
Author(s):  
Ahmed I. El-Batal ◽  
Ayman A. Farrag ◽  
Mohamed A. Elsayed ◽  
Ahmed M. El-Khawaga

Abstract- The present investigation was carried out to evaluate the effect of different growth conditions on lipase production byAspegillus niger. The extracellular lipase producing fungus was isolated from spent bleaching earths. Optimization of physical and chemical parameters was done for maximum lipase production using this isolate. Growth of the organism and lipase production were measured usig varying pH (4 – 9), incubation temperature (20 – 30 °C), incubation time (8 – 80 hrs.), carbon sources, nitrogen sources, and shaking speed. Enhanced lipase production was observed at 24 °C, pH 7 and after 72hrs of incubation. Olive oil 5 % was observed as the most effective carbon source and Yeast extract 1.0 % as the most effective nitrogen source for lipase production. The optimum shaking value to get maximum lipase activity byAspergillusnigerwas 200 rpm.


2019 ◽  
Vol 63 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Joseph Adetunji Elegbede ◽  
Agbaje Lateef

Xylanases are important in producing several commercially valued bioproducts. In this study, xylanases were produced by Aspergillus niger L3 and Trichoderma longibrachiatum L2 using corncob, an agricultural waste, as sole carbon source. The impact of important fermentation parameters at individual and interactive levels were studied using Taguchi L9 orthogonal array. Substantial variation in enzyme synthesis was observed among designated factor levels. The optimal conditions to produce xylanases were 20% inoculum size, 24 h fermentation time, substrate concentration of 15 g/l at pH 5.5 for A. niger L3; and inoculum size 12.5%, 72 h fermentation time, substrate concentration of 15 g/l at pH 5.5 for T. longibrachiatum L2. Validation of outcomes of the optimal combination of parameters resulted in a significant improvement of approximately 208.09 and 192.59% in the yield of xylanase by A. niger L3 (28.69 to 88.39 U/ml) and T. longibrachiatum L2 (22.13 to 64.75 U/ml), respectively. The study therefore established the optimal valorization of corncob to produce xylanase by the fungal isolates.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 322
Author(s):  
Evelina Volpe ◽  
Luca Ciabatta ◽  
Diana Salciarini ◽  
Stefania Camici ◽  
Elisabetta Cattoni ◽  
...  

The development of forecasting models for the evaluation of potential slope instability after rainfall events represents an important issue for the scientific community. This topic has received considerable impetus due to the climate change effect on territories, as several studies demonstrate that an increase in global warming can significantly influence the landslide activity and stability conditions of natural and artificial slopes. A consolidated approach in evaluating rainfall-induced landslide hazard is based on the integration of rainfall forecasts and physically based (PB) predictive models through deterministic laws. However, considering the complex nature of the processes and the high variability of the random quantities involved, probabilistic approaches are recommended in order to obtain reliable predictions. A crucial aspect of the stochastic approach is represented by the definition of appropriate probability density functions (pdfs) to model the uncertainty of the input variables as this may have an important effect on the evaluation of the probability of failure (PoF). The role of the pdf definition on reliability analysis is discussed through a comparison of PoF maps generated using Monte Carlo (MC) simulations performed over a study area located in the Umbria region of central Italy. The study revealed that the use of uniform pdfs for the random input variables, often considered when a detailed geotechnical characterization for the soil is not available, could be inappropriate.


2021 ◽  
Author(s):  
Pfariso Maumela ◽  
Shaunita Rose ◽  
Eugene van Rensburg ◽  
Annie Chimphango ◽  
Johann Gorgens

Abstract Endoinulinases gene was expressed in recombinant Aspergillus niger for selective and high-level expression using an exponential fed-batch fermentation. The effects of the growth rate (µ), glucose feed concentration, nitrogen concentration and fungal morphology, on enzyme production were evaluated. A recombinant endoinulinases with a molecular weight of 66 KDa was secreted. Endoinulinases production was growth associated at µ> 0.04 h -1 , which is characteristic of the constitutive gpd promoter used for the enzyme production. The highest volumetric activity (670 U/ml) was achieved at a growth rate of 93% of µ max (0.07 h -1 ), while enzyme activity (506 U/ml) and biomass substrate yield (0.043 g biomassDW /g glucose ) significantly decreased at low µ (0.04 h -1 ). Increasing the feed concentration resulted in high biomass concentrations and viscosity, which necessitated high agitation for improved mixing and oxygen. However, the high agitation and low DO levels (ca. 8% of saturation) led to pellet disruption and growth in mycelial morphology. Enzyme production profiles, product (Y p/s ) and biomass (Y x/s ) yield coefficients were not affected by feed concentration and morphological change. The gradual increase in the concentration of nitrogen sources showed that, a nitrogen limited culture was not suitable for endoinulinases production in recombinant A. niger. Moreover, the increase in enzyme volumetric activity was still directly related to an increase in biomass concentration. An increase in nitrogen concentration, from 3.8 to 12 g/L, resulted in volumetric activity increase from 393 to 670 U/ml, but the Y p/s (10053 U/g glucose ) and Y x/s (0.049 g biomasDWs /g glucose ) did not significantly change. The data demonstrated the potential of recombinant A. niger and high cell density fermentation for the development of largescale endoinulinases production system.


Sign in / Sign up

Export Citation Format

Share Document