scholarly journals A wireless caching helper system with heterogeneous traffic and random availability

Author(s):  
Ioannis Avgouleas ◽  
Nikolaos Pappas ◽  
Vangelis Angelakis

AbstractMultimedia content streaming from Internet-based sources emerges as one of the most demanded services by wireless users. In order to alleviate excessive traffic due to multimedia content transmission, many architectures (e.g., small cells, femtocells, etc.) have been proposed to offload such traffic to the nearest (or strongest) access point also called “helper”. However, the deployment of more helpers is not necessarily beneficial due to their potential of increasing interference. In this work, we evaluate a wireless system which can serve both cacheable and non-cacheable traffic. More specifically, we consider a general system in which a wireless user with limited cache storage requests cacheable content from a data center that can be directly accessed through a base station. The user can be assisted by a pair of wireless helpers that exchange non-cacheable content as well. Files not available from the helpers are transmitted by the base station. We analyze the system throughput and the delay experienced by the cached user and show how these performance metrics are affected by the packet arrival rate at the source helper, the availability of caching helpers, the caches’ parameters, and the user’s request rate by means of numerical results.

Author(s):  
Mohammad Anbar ◽  
Deo P. Vidyarthi

A Cellular IP (CIP) network involves a bulk of data transmission. It is highly reliable and guarantees the safe delivery of the packets required in such systems. Reliable traffic performance leads to efficient and reliable connectivity in Cellular IP network. CIP network, which consists of mobile hosts, base stations, and links, are often vulnerable and prone to failure. During the routing operation in the network, the base station, which works as router for the transmitted packets, may fail to perform. Reliable transmission is desirable, in terms of services of the base stations in the network, reliable routing, and processing the data. In this paper, the authors design a reliability model to increase the reliability of a flow, consisting of packets, passing through routers in a Cellular IP network. Particle Swarm Optimization (PSO) is able to solve a class of complex optimization problems. PSO is used to improve the reliability of the flow in CIP network. The proposed model studies the effects of packet processing rate (), packet arrival rate (), and the number of packets per flow on the reliability of the system. A simulation experiment is conducted and results reveal the effectiveness of the model.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Pervez Khan ◽  
Niamat Ullah ◽  
Md. Nasre Alam ◽  
Kyung Sup Kwak

The IEEE 802.15.6 is a new standard on wireless body area network (WBAN) for short-range, extremely low power wireless communication with high data rates in the vicinity of, or inside, a human body. The standard defines two contention-based channel access schemes: slotted ALOHA and carrier sense multiple access with collision avoidance (CSMA/CA) using an alternative binary exponential backoff procedure. The standard supports quality of service (QoS) differentiation through user priorities and access phases. In this study, we develop an analytical model for the estimation of performance metrics such as energy consumption, normalized throughput, and mean frame service time, employing a Markov chain model under nonsaturated heterogeneous traffic scenarios including different access phases specified in the standard for different user priorities and access methods. We conclude that the deployment of exclusive access phase (EAP) is not necessary in a typical WBAN using CSMA/CA because it degrades the overall system throughput, consumes more energy per packet, and results in higher delay for nonemergency nodes.


2008 ◽  
Vol 19 (10) ◽  
pp. 2762-2769 ◽  
Author(s):  
Wei-Dong YANG ◽  
Jian-Feng MA ◽  
Ya-Hui LI

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 732
Author(s):  
Avner Elgam ◽  
Yael Balal ◽  
Yosef Pinhasi

Many communication systems are based on the Multiple Input, Multiple Output (MIMO) scheme, and Orthogonal Space–time Block Transmit diversity Coding (OSTBC), combined with Maximal Ratio Receive Combining (MRRC), to create an optimal diversity system. A system with optimal diversity fixes and optimizes the channel’s effects under multi-path and Rayleigh fading with maximum energy efficiency; however, the challenge does not end with dealing with the channel destruction of the multi-path impacts. Susceptibility to interference is a significant vulnerability in future wireless mobile networks. The 5th Generation New Radio (5G-NR) technologies bring hundreds of small cells and pieces of User Equipment (UE) per indoor or outdoor local area scenario under a specific Long Term Evolution (LTE)-based station (e-NodeB), or under 5G-NR base-station (g-NodeB). It is necessary to study issues that deal with many interference signals, and smart jammers from advanced communication equipment cause deterioration in the links between the UE, the small cells, and the NodeB. In this paper, we study and present the significant impact and performances of 2×2 Alamouti Phase-Shift Keying (PSK) modulation techniques in the presence of an interferer and a smart jammer. The destructive effects affecting the MIMO array and the advanced diversity technique without closed-loop MIMO are analyzed. The performance is evaluated in terms of Bit Error Rate (BER) vs. Signal to Interference Ratio (SIR). In addition, we proved the impairment of the orthogonal spectrum assumption mathematically.


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 144 ◽  
Author(s):  
Muhammad Arshad ◽  
Imran Khan ◽  
Jaime Lloret ◽  
Ignacio Bosch

The 2D precoding technology can only adjust the beam in a horizontal direction through data processing, which will cause serious problems for multiuser systems, especially at the edge of the base station it will cause serious inter-cell interference. To solve this problem, in the frequency-division duplex (FDD) 3D-MIMO Heterogeneous network system, the influence of feedback overhead on system performance under limited feedback mechanism is studied using random geometry. Based on the deployment of a uniform planar array (UPA) at the base station, a 3D-MIMO multiuser codebook design scheme based on horizontal transmission angle and the vertical down-tilt angle is proposed, and the codebook design scheme is simulated and analyzed. The results show that the feedback overhead and the micro base station density affect the system throughput and even affect the bit error rate (BER) of the 3D precoding scheme. Compared with the precoding scheme based on 2D and 3D discrete Fourier transform (DFT) codebooks, this scheme greatly reduces the system’s BER, improves the system’s throughput, and optimizes system performance.


2019 ◽  
Vol 8 (2) ◽  
pp. 6527-6534

Massive Multi-Input and Multi-Output (MIMO) antenna system potentially provides a promising solution to improve energy efficiency (EE) for 5G wireless systems. The aim of this paper is to enhance EE and its limiting factors are explored. The maximum EE of 48 Mbit/Joule was achieved with 15 user terminal (UT)s. This problem is related to the uplink spectral efficiency with upper bound for future wireless networks. The maximal EE is obtained by optimizing a number of base station (BS) antennas, pilot reuse factor, and BSs density. We presented a power consumption model by deriving Shannon capacity calculations with closed-form expressions. The simulation result highlights the EE maximization with optimizing variables of circuit power consumption, hardware impairments, and path-loss exponent. Small cells achieve high EE and saturate to a constant value with BSs density. The MRC scheme achieves maximum EE of 36 Mbit/Joule with 12 UTs. The simulation results show that peak EE is obtained by deploying massive BS antennas, where the interference and pilot contamination are mitigated by coherent processing. The simulation results were implemented by using MATLAB 2018b.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-10
Author(s):  
Kazuki Maruta

This paper newly proposes a frequency domain backoff scheme dedicated to continuous beamforming space division multiple access (CB-SDMA) on massive antenna systems for wireless entrance (MAS-WE). The entrance base station (EBS) has individual base band signal processing units for respective relay stations (RSs) to be accommodated. EBS then continuously applies beamforming weight to transmission/reception signals. CB-SDMA yields virtual point-to-point backhaul link where radio resource control messages and complicated multiuser scheduling are not required. This simplified structure allows RSs to work in a distributed manner. However, one issue remains to be resolved; overloaded multiple access resulting in collision due to its random access nature. The frequency domain backoff mechanism is introduced instead of the time domain one. It can flexibly avoid co-channel interference caused by excessive spatial multiplexing. Computer simulation verifies its superiority in terms of system throughput and packet delay.


Author(s):  
K.N Puniran ◽  
Ahmad Robiah ◽  
Rudzidatul Akmam Dziyauddin

Energy harvesting (EH) module for wireless sensor network has become a promising feature to prolong the conventional battery inside the devices. This emerging technology is gaining interest from sensor manufacturers as well as academicians across the globe. The concept of employing EH module must be cost effective and practical. In such, the use of EH module type besides RF is more realistic due to the size of the scavenger module, the availability of the resources and conversion efficiency. Most of the oil and gas plants have some drawbacks in scavenging RF from surrounding (i.e. router, Wi-Fi, base station, cell phone) due to its placement in remote area and thus limited energy sources could be a threat in this application. Multiple sources, including co-channel interference (CCI) in any constraint nodes is a feasible way of scavenging several wastes from ambient RF energy via wireless mesh topology. In this paper, a 3-node decode-and-forward (DF) model is proposed where the relay node is subject to an energy constraint. Multiple primary sources and CCI are added in the system model known as Multiple-Source and Single-Relay (MSSR). A mathematical model is derived in Time Switching Relaying (TSR) and Power Splitting Relaying (PSR) schemes to obtain an average system throughput at a destination. Numerical simulation with respect to the average throughput and EH ratio was performed and compared with the Single-Source and Single-Relay (SSSR) and ideal receiver. By applying multiple sources and CCI as an energy enhancement at the constraint node, the optimal value of EH ratio for TSR can be reduced significantly by 10% as compared to the ideal receiver whereas the optimal value of EH ratio for PSR is outweigh TSR in terms of overall system throughput.


2021 ◽  
Author(s):  
Haleh Khojasteh

The focus of this thesis is solving the problem of resource allocation in cloud datacenter using an Infrastructure-as-a-Service (IaaS) cloud model. We have investigated the behavior of IaaS cloud datacenters through detailed analytical and simulation models that model linear, transitional and saturated operation regimes. We have obtained accurate performance metrics such as task blocking probability, total delay, utilization and energy consumption. Our results show that the offered load does not offer complete characterization of datacenter operation; therefore, in our evaluations, we have considered the impact of task arrival rate and task service time separately. To keep the cloud system in the linear operation regime, we have proposed several dynamic algorithms to control the admission of incoming tasks. In our first solution, task admission is based on task blocking probability and predefined thresholds for task arrival rate. The algorithms in our second solution are based on full rate task acceptance threshold and filtering coefficient. Our results confirm that the proposed task admission mechanisms are capable of maintaining the stability of cloud system under a wide range of input parameter values. Finally, we have developed resource allocation solutions for mobile clouds in which offloading requests from a mobile device can lead to forking of new tasks in on-demand manner. To address this problem, we have proposed two flexible resource allocation mechanisms with different prioritization: one in which forked tasks are given full priority over newly arrived ones, and another in which a threshold is established to control the priority. Our results demonstrate that threshold-based priority scheme presents better system performance than the full priority scheme. Our proposed solution for clouds with mobile users can be also applied in other clouds which their users’ applications fork new tasks.


Sign in / Sign up

Export Citation Format

Share Document