scholarly journals Resveratrol protects human nucleus pulposus cells from degeneration by blocking IL-6/JAK/STAT3 pathway

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Cenhao Wu ◽  
Jun Ge ◽  
Ming Yang ◽  
Qi Yan ◽  
Yingjie Wang ◽  
...  

Abstract Background Nucleus pulposus cells’ (NPCs’) degeneration is mainly responsible for the intervertebral disc degeneration (IDD), which is closely related to inflammatory response. Among the major proinflammatory factors that are related to NPCs’ degeneration, interleukin-6 (IL-6) and its downstream JAK/STAT3 pathway have received recent attention. The goal of our study is to figure out whether or how resveratrol (RSV) can protect NPCs from degeneration by affecting IL6/JAK/STAT3 pathway. Methods Different concentrations of RSV were added to NPCs’ mediums. Cell viability was measured by MTT assay and crystal violet staining. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression level was determined by western blot. mRNA expression level was measured by qPCR. Results Our study showed that RSV improved NPCs’ cell viability. It also inhibited cell apoptosis and cell cycle arrest, which were accompanied by the increased expression level of heat shock protein 90 (HSP90) and N-Cadherin. What’ more, RSV also improved the NPCs’ degeneration which was reflected in the increase of extracellular matrix (collagen II, Aggrecan). Moreover, RSV significantly attenuated the level of IL-6 secretion, which was accompanied by less phosphorylation of the transcription factors Janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3). Conclusion RSV exerted its protective effect on HNPCs’ degeneration by improving cell survival and function. The possible mechanism may be associated with the suppression of JAK/STAT3 phosphorylation and the decreased IL-6 production, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK/STAT3 pathway.

2021 ◽  
Author(s):  
Cenhao Wu ◽  
Jun Ge ◽  
Ming Yang ◽  
Qi Yan ◽  
Yingjie Wang ◽  
...  

Abstract Background: Nucleus pulposus cells’ (NPCs’) degeneration is mainly responsible for the intervertebral disc degeneration (IDD), which is closely related to inflammatory response. Among the major proinflammatory factors that are related to NPCs’ degeneration, interleukin-6 (IL-6) and its downstream JAK/STAT3 pathway have received recent attention. The goal of our study is to figure out whether or how resveratrol (RSV) can protect NPCs from degeneration by affecting IL6/JAK/STAT3 pathway. Methods: Different concentrations of RSV were added to NPCs’ mediums. Cell viability was measured by MTT assay and crystal violet staining. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression level was determined by western blot. mRNA expression level was measured by qPCR.Results: Our study showed that RSV improved NPCs’ cell viability. It also inhibited cell apoptosis and cell cycle arrest, which were accompanied by the increased expression level of heat shock protein 90 (HSP90) and N-Cadherin. What’ more, RSV also improved the NPCs’ degeneration which was reflected in the increase of extracellular matrix (collagen II, Aggrecan). Moreover, RSV significantly attenuated the level of IL-6 secretion, which was accompanied by less phosphorylation of the transcription factors janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3). Conclusion: RSV exerted its protective effect on HNPCs’ degeneration by improving cell survival and function. The possible mechanism may be associated with the suppression of JAK/STAT3 phosphorylation and the decreased IL-6 production, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK/STAT3 pathway.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ning Tang ◽  
Yulei Dong ◽  
Chong Chen ◽  
Hong Zhao

Objectives: Anisodamine (ANI) has been used to treat a variety of diseases. However, the study of ANI in intervertebral disc degeneration (IVDD) is unclear. This study investigated the effects of ANI on degenerative nucleus pulposus cells (NPCs) and IVDD rats, and its possible mechanisms.Methods: Human nucleus pulposus cells (HNPCs) were treated with IL-1β (20 ng/ml) to simulate IVDD, and an IVDD rat model was constructed. IL-1β-induced HNPCs were treated with different concentrations (10, 20, or 40 μM) of ANI, and IVDD rats were also treated with ANI (1 mg/kg).Results: ANI treatment significantly reduced the apoptosis, caspase-3 and SA-β-gal activities, and p53 and p21 proteins expression, while promoted telomerase activity and aggrecan and collagen II synthesis in IL-1β-induced HNPCs. Moreover, the introduction of ANI inhibited the expression of IL-6, phosphorylation of JAK and STAT3, and nuclear translocation of p-STAT3 in Degenerated HNPCs. Additionally, the application of ANI abolished the effects of IL-6 on apoptosis, SA-β-gal and telomerase activity, and the expression of p53, p21, aggrecan and collagen II proteins in degenerated HNPCs. Simultaneously, ANI treatment enhanced the effects of AG490 (inhibitor of JAK/STAT3 pathway) on IL-1β-induced apoptosis, senescence and ECM degradation in HNPCs. Furthermore, ANI treatment markedly inhibited the apoptosis and senescence in the nucleus pulposus of IVDD rats, while promoted the synthesis of aggrecan and collagen II. ANI treatment obviously inhibited JAK and STAT3 phosphorylation and inhibited nuclear translocation of p-STAT3 in IVDD rats.Conclusion: ANI inhibited the senescence and ECM degradation of NPCs by regulating the IL-6/JAK/STAT3 pathway to improve the function of NPCs in IVDD, which may provide new ideas for the treatment of IVDD.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyu Wang ◽  
Yuanjian Fang ◽  
Yunxiang Zhou ◽  
Xiaoming Guo ◽  
Ke Xu ◽  
...  

BackgroundNonfunctioning pituitary neuroendocrine tumor (NF-PitNET) is difficult to resect. Except for surgery, there is no effective treatment for NF-PitNET. MicroRNA-134 (miR-134) has been reported to inhibit proliferation and invasion ability of tumor cells. Herein, the mechanism underlying the effect of miR-134 on alleviating NF-PitNET tumor cells growth is explored.MethodsMouse pituitary αT3-1 cells were transfected with miR-134 mimics and inhibitor, followed by treatment with stromal cell-derived factor-1α (SDF-1α) in vitro. MiR-134 expression level: we used quantitative real-time PCR (qRT-PCR) to detect the expression of miR-134. Cell behavior level: cell viability and invasion ability were assessed using a cell counting kit-8 (CCK8) assay and Transwell invasion assay respectively. Cytomolecular level: tumor cell proliferation was evaluated by Ki-67 staining; propidium iodide (PI) staining analyzed the effect of miR-134 on cell cycle arrest; western blot analysis and immunofluorescence staining evaluated tumor migration and invasive ability. Additionally, we collected 27 NF-PitNET tumor specimens and related clinical data. The specimens were subjected to qRT-PCR to obtain the relative miR-134 expression level of each specimen; linear regression analysis was used to analyze the miR-134 expression level in tumor specimens and the age of the NF-PitNET population, gender, tumor invasion, prognosis, and other indicators.ResultsIn vitro experiment, miR-134 was observed to significantly inhibit αT3-1 cells proliferation characterized by inhibited cell viability and expressions of vascular endothelial growth factor A (VEGFA) and cell cycle transition from G1 to S phase (P < 0.01). VEGFA was verified as a target of miR-134. Additionally, miR-134-induced inhibition of αT3-1 cell proliferation and invasion was attenuated by SDF-1α and VEGFA overexpression (P < 0.01). In primary NF-PitNET tumor analysis, miR-134 expression level was negatively correlated with tumor invasion (P = 0.003).ConclusionThe regulation of the SDF-1α/miR-134/VEGFA axis represents a novel mechanism in the pathogenesis of NF-PitNETs and may serve as a potential therapeutic target for the treatment of NF-PitNETs.


2016 ◽  
Vol 38 (1) ◽  
pp. 295-305 ◽  
Author(s):  
Jin Feng Ma ◽  
Li Na Zang ◽  
Yong Ming Xi ◽  
Wen Jiu Yang ◽  
Debo Zou

Background: Spinal degenerative diseases are a major health problem and social burden worldwide. Intervertebral disc degeneration (IDD) is the pathological basis of spinal degenerative diseases and is characterized by loss of nucleus pulposus cells due to excessive apoptosis caused by various factors. MicroRNAs (miRNAs) have been reported to be functionally involved in the control of apoptosis. Methods: computational analysis and luciferase assay were used to identify the target of miR-125a, and cell culture, transfection were used to confirm such relationship. Sequencing was used to determine the genotype of each participant. Results: We confirmed the previous report that the presence of the minor allele (T) of rs12976445 polymorphism significantly downregulated the expression level of miR-125a in nucleus pulposus cells, leading to less efficient inhibition of its target gene. We also validated TP53INP1 as a target of miR-125a in nucleus pulposus cells using a dual luciferase reporter system, and the transfection of miR-125a significantly reduced the expression of TP53INP1. The expression level of TP53INP1 was significantly lower in nucleus pulposus cells genotyped as CT or TT than in those genotyped as CC, and the apoptosis rate was consistently lower in the CC group than in the nucleus pulposus cells collected from individuals carrying at least one minor allele of rs12976445 polymorphism. To study the association between rs12976445 polymorphism and the risk of IDD, we enrolled 242 patients diagnosed with IDD and 278 normal controls, and significant differences were noted regarding the genotype distribution of rs12976445 between the IDD and the control groups (OR = 2.69, 95% C.I. = 1.88-3.83, p < 0.0001). In summary, rs12976445 polymorphism is significantly associated with the risk of IDD in the Chinese population. Conclusion: The present study indicated that miR-125a is a promising potential target for patients with IDD in clinical practice.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jian-Mei Li ◽  
Wei Wang ◽  
Chen-Yu Fan ◽  
Ming-Xing Wang ◽  
Xian Zhang ◽  
...  

Fructose-induced hyperinsulinemia is associated with insulin compensative secretion and predicts the onset of type 2 diabetes. In this study, we investigated the preservation of dietary flavonoid quercetin on pancreaticβ-cell mass and function in fructose-treated rats and INS-1β-cells. Quercetin was confirmed to reduce serum insulin and leptin levels and blockade islet hyperplasia in fructose-fed rats. It also prevented fructose-inducedβ-cell proliferation and insulin hypersecretion in INS-1β-cells. High fructose increased forkhead box protein O1 (FoxO1) expressionsin vivoandin vitro, which were reversed by quercetin. Quercetin downregulated Akt and FoxO1 phosphorylation in fructose-fed rat islets and increased the nuclear FoxO1 levels in fructose-treated INS-1β-cells. The elevated Akt phosphorylation in fructose-treated INS-1β-cells was also restored by quercetin. Additionally, quercetin suppressed the expression of pancreatic and duodenal homeobox 1 (Pdx1) and insulin gene (Ins1 and Ins2)in vivoandin vitro. In fructose-treated INS-1β-cells, quercetin elevated the reduced janus kinase 2/signal transducers and activators of transcription 3 (Jak2/Stat3) phosphorylation and suppressed the increased suppressor of cytokine signaling 3 (Socs3) expression. These results demonstrate that quercetin protectsβ-cell mass and function under high-fructose induction through improving leptin signaling and preserving pancreatic Akt/FoxO1 activation.


2017 ◽  
Vol 43 (6) ◽  
pp. 2327-2337 ◽  
Author(s):  
Zhenyu Wang ◽  
Jiali Leng ◽  
Yuguang Zhao ◽  
Dehai Yu ◽  
Feng Xu ◽  
...  

Background/Aims: Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Methods: Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. Results: The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. Conclusion: N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1640 ◽  
Author(s):  
Si-Dong Yang ◽  
Lei Ma ◽  
Da-Long Yang ◽  
Wen-Yuan Ding

Background: In previous studies, both 17β-estradiol (E2) and resveratrol (RES) were reported to protect intervertebral disc cells against aberrant apoptosis. Given that E2 has a better anti-apoptotic effect with more cancer risk and RES has an anti-apoptotic effect with less cancer risk, the combined use of E2 with RES is promising in developing clinical therapies to treat apoptosis-related diseases such as intervertebral disc degeneration in the future.Objective: The purpose of this study was to explore the combined effect of E2 with RES on rat nucleus pulposus cells and the underlying mechanisms.Methods: TUNEL assay and FACS analysis were used to determine apoptotic incidence of nucleus pulposus cells. MTS assay was used to determine cell viability, and cellular binding assay was used to determine cell-ECM (extracellular matrix) ability. Real-time quantitative RT-PCR was to determine mRNA level of target genes. And Western blot was used to determine the protein level.Results: Both E2 and RES decreased apoptotic incidence when used singly; interestingly, they decreased apoptosis more efficiently when used combinedly. Meanwhile, E2 and RES combined together against the decrease of cell viability and binding ability resulting from IL-1β cytotoxicity. As well, activated caspase-3 was suppressed by the combined effect. Furthermore, IL-1β downregulated expression level of type II collagen and aggrecan (standing for anabolism), while upregulated MMP-3 and MMP-13 (standing for catabolism). However, the combined use of E2 with RES effectively abolished the above negative effects caused by IL-1β, better than either single use. Finally, it turned out to be that E2 and RES combined together against apoptosis via the activation of PI3K/Akt/caspase-3 pathway.Conclusion: This study presented that IL-1β induced aberrant apoptosis, which was efficiently resisted by the combined use of E2 with RES via PI3K/Akt/caspase-3 pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rong Wang ◽  
Xingchao Zhou ◽  
Guorui Luo ◽  
Jin Zhang ◽  
Min Yang ◽  
...  

Intervertebral disc degeneration (IDD) is widely accepted as a cause of low back pain and related degenerative musculoskeletal disorders. Nucleus pulposus (NP) cell loss is closely related to IDD progression. Thus, investigating the specifically targeted therapeutic agents against NP cell loss depends on understanding the molecular mechanisms. In this study, human NP cells were treated with hydrogen peroxide (H2O2). Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) kit. The expression of circRNA arginine-glutamic acid dipeptide repeats (hsa_circ_RERE) and miR-299-5p was analyzed by real-time quantitative PCR. Western blot analysis was used to assess the protein expression levels. The autophagy levels in NP cells were detected by using an electronic microscope, LC3B protein immunofluorescence, and western blot. The apoptosis levels of NP cells were detected by flow cytometry and western blot. Dual-luciferase reporter assay analyzed the miR-299-5p bound to circ_RERE and galectin-3. Our results revealed that H2O2 significantly inhibited the viability of NP cells, promoted apoptosis and autophagy, and upregulated galectin-3 expression. miR-299-5p was reduced in IDD and H2O2-induced NP cells. The overexpression of miR-299-5p promoted cell viability and attenuated apoptosis and autophagy under H2O2 treatment. Besides, circ_RERE was upregulated in IDD and H2O2-induced NP cells. However, knockdown of circ_RERE reversed the effects of miR-299-5p overexpression on cell viability, apoptosis, and autophagy in NP cells. We propose that circ_RERE promotes the H2O2-induced apoptosis and autophagy of NP cells through the miR-299-5p/galectin-3 axis and may provide a new target for the clinical treatment of IDD.


Author(s):  
Priscilla Y. Hwang ◽  
Christopher L. Gilchrist ◽  
Aubrey T. Francisco ◽  
Jun Chen ◽  
Lori A. Setton

Changes in nucleus pulposus (NP) cell phenotype and morphology are implicated in the progression of intervertebral disc (IVD) disorders. Understanding how changes in the NP cell microenvironment influence cell behavior and function is important for revealing how pathology-related changes in IVD extracellular matrix may affect NP cell biology. In this study, live-cell imaging techniques were utilized to study changes in cell migration and morphology when cultured upon substrates of different matrix proteins and stiffnesses. Results indicate that soft substrates containing matrix proteins promote cell clustering and cell-cell interactions which mimic in vivo conditions of healthy NP cells.


Sign in / Sign up

Export Citation Format

Share Document