scholarly journals Anisodamine Maintains the Stability of Intervertebral Disc Tissue by Inhibiting the Senescence of Nucleus Pulposus Cells and Degradation of Extracellular Matrix via Interleukin-6/Janus Kinases/Signal Transducer and Activator of Transcription 3 Pathway

2020 ◽  
Vol 11 ◽  
Author(s):  
Ning Tang ◽  
Yulei Dong ◽  
Chong Chen ◽  
Hong Zhao

Objectives: Anisodamine (ANI) has been used to treat a variety of diseases. However, the study of ANI in intervertebral disc degeneration (IVDD) is unclear. This study investigated the effects of ANI on degenerative nucleus pulposus cells (NPCs) and IVDD rats, and its possible mechanisms.Methods: Human nucleus pulposus cells (HNPCs) were treated with IL-1β (20 ng/ml) to simulate IVDD, and an IVDD rat model was constructed. IL-1β-induced HNPCs were treated with different concentrations (10, 20, or 40 μM) of ANI, and IVDD rats were also treated with ANI (1 mg/kg).Results: ANI treatment significantly reduced the apoptosis, caspase-3 and SA-β-gal activities, and p53 and p21 proteins expression, while promoted telomerase activity and aggrecan and collagen II synthesis in IL-1β-induced HNPCs. Moreover, the introduction of ANI inhibited the expression of IL-6, phosphorylation of JAK and STAT3, and nuclear translocation of p-STAT3 in Degenerated HNPCs. Additionally, the application of ANI abolished the effects of IL-6 on apoptosis, SA-β-gal and telomerase activity, and the expression of p53, p21, aggrecan and collagen II proteins in degenerated HNPCs. Simultaneously, ANI treatment enhanced the effects of AG490 (inhibitor of JAK/STAT3 pathway) on IL-1β-induced apoptosis, senescence and ECM degradation in HNPCs. Furthermore, ANI treatment markedly inhibited the apoptosis and senescence in the nucleus pulposus of IVDD rats, while promoted the synthesis of aggrecan and collagen II. ANI treatment obviously inhibited JAK and STAT3 phosphorylation and inhibited nuclear translocation of p-STAT3 in IVDD rats.Conclusion: ANI inhibited the senescence and ECM degradation of NPCs by regulating the IL-6/JAK/STAT3 pathway to improve the function of NPCs in IVDD, which may provide new ideas for the treatment of IVDD.

Author(s):  
Chenglong Xie ◽  
Yifeng Shi ◽  
Zuoxi Chen ◽  
Xin Zhou ◽  
Peng Luo ◽  
...  

Oxidative stress–induced apoptosis and senescence of nucleus pulposus (NP) cells play a crucial role in the progression of intervertebral disc degeneration (IVDD). Accumulation of studies has shown that activated autophagy and enhanced autophagic flux can alleviate IVDD. In this study, we explored the effects of apigenin on IVDD in vitro and in vivo. Apigenin was found to inhibit tert-butyl hydroperoxide (TBHP)–induced apoptosis, senescence, and ECM degradation in NP cells. In addition, apigenin treatment can restore the autophagic flux blockage caused by TBHP. Mechanistically, we found that TBHP may induce autophagosome and lysosome fusion interruption and lysosomal dysfunction, while apigenin alleviates these phenomena by promoting the nuclear translocation of TFEB via the AMPK/mTOR signaling pathway. Furthermore, apigenin also exerts a protective effect against the progression of IVDD in the puncture-induced rat model. Taken together, these findings indicate that apigenin protects NP cells against TBHP-induced apoptosis, senescence, and ECM degradation via restoration of autophagic flux in vitro, and it also ameliorates IVDD progression in rats in vivo, demonstrating its potential for serving as an effective therapeutic agent for IVDD.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangyu Deng ◽  
Sheng Chen ◽  
Dong Zheng ◽  
Zengwu Shao ◽  
Hang Liang ◽  
...  

Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum. This study investigated the mechanism by which icariin prevents H2O2-induced apoptosis in rat nucleus pulposus (NP) cells. NP cells were isolated from the rat intervertebral disc and they were divided into five groups after 3 passages: (A) blank control; (B) 200 μM H2O2; (C) 200 μM H2O2 + 20 μM icariin; (D) 20 μM icariin + 200 μM H2O2 + 25 μM LY294002; (E) 200 μM H2O2 + 25 μM LY294002. LY294002 is a selective inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. NP cell viability, apoptosis rate, intracellular reactive oxygen species levels, and the expression of AKT, p-AKT, p53, Bcl-2, Bax, caspase-3 were estimated. The results show that, compared with the control group, H2O2 significantly increased NP cell apoptosis and the level of intracellular ROS. Icariin pretreatment significantly decreased H2O2-induced apoptosis and intracellular ROS and upregulated p-Akt and BCL-2 and downregulated caspase-3 and Bax. LY294002 abolished the protective effects of icariin. Our results show that icariin can attenuate H2O2-induced apoptosis in rat nucleus pulposus cells and PI3K/AKT pathway is at least partly included in this protection effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Huipeng Yin ◽  
Kun Wang ◽  
Abhirup Das ◽  
Gaocai Li ◽  
Yu Song ◽  
...  

The death of nucleus pulposus (NP) cells is an important cause of intervertebral disc (IVD) degeneration. Redox disturbance caused by dysfunctional mitochondria has been considered as a vital risk for NP cell survival. It is valuable to identify key proteins maintaining mitochondrial function in NP cells. A previous study found that regulated in development and DNA damage response 1 (REDD1) are upregulated during intervertebral disc degeneration and that REDD1 can cause NP cell apoptosis. Thus, the present study further explores the effect of REDD1 on IVD degeneration. Our results showed that REDD1 promotes NP cell apoptosis via the mitochondrial pathway. Importantly, REDD1 formed a complex with TXNIP to strengthen its own action, and the combination was consolidated under H2O2-induced oxidative stress. The combined inhibition of the REDD1/TXNIP complex was better than that of REDD1 or TXNIP alone in restoring cell proliferation and accelerating apoptosis. Moreover, p53 acts as the transcription factor of REDD1 to regulate the REDD1/TXNIP complex under oxidative stress. Altogether, our results demonstrated that the REDD1/TXNIP complex mediated H2O2-induced human NP cell apoptosis and IVD degeneration through the mitochondrial pathway. Interferences on these sites to achieve mitochondrial redox homeostasis may be a novel therapeutic strategy for oxidative stress-associated IVD degeneration.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Cenhao Wu ◽  
Jun Ge ◽  
Ming Yang ◽  
Qi Yan ◽  
Yingjie Wang ◽  
...  

Abstract Background Nucleus pulposus cells’ (NPCs’) degeneration is mainly responsible for the intervertebral disc degeneration (IDD), which is closely related to inflammatory response. Among the major proinflammatory factors that are related to NPCs’ degeneration, interleukin-6 (IL-6) and its downstream JAK/STAT3 pathway have received recent attention. The goal of our study is to figure out whether or how resveratrol (RSV) can protect NPCs from degeneration by affecting IL6/JAK/STAT3 pathway. Methods Different concentrations of RSV were added to NPCs’ mediums. Cell viability was measured by MTT assay and crystal violet staining. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression level was determined by western blot. mRNA expression level was measured by qPCR. Results Our study showed that RSV improved NPCs’ cell viability. It also inhibited cell apoptosis and cell cycle arrest, which were accompanied by the increased expression level of heat shock protein 90 (HSP90) and N-Cadherin. What’ more, RSV also improved the NPCs’ degeneration which was reflected in the increase of extracellular matrix (collagen II, Aggrecan). Moreover, RSV significantly attenuated the level of IL-6 secretion, which was accompanied by less phosphorylation of the transcription factors Janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3). Conclusion RSV exerted its protective effect on HNPCs’ degeneration by improving cell survival and function. The possible mechanism may be associated with the suppression of JAK/STAT3 phosphorylation and the decreased IL-6 production, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK/STAT3 pathway.


2021 ◽  
Author(s):  
Cenhao Wu ◽  
Jun Ge ◽  
Ming Yang ◽  
Qi Yan ◽  
Yingjie Wang ◽  
...  

Abstract Background: Nucleus pulposus cells’ (NPCs’) degeneration is mainly responsible for the intervertebral disc degeneration (IDD), which is closely related to inflammatory response. Among the major proinflammatory factors that are related to NPCs’ degeneration, interleukin-6 (IL-6) and its downstream JAK/STAT3 pathway have received recent attention. The goal of our study is to figure out whether or how resveratrol (RSV) can protect NPCs from degeneration by affecting IL6/JAK/STAT3 pathway. Methods: Different concentrations of RSV were added to NPCs’ mediums. Cell viability was measured by MTT assay and crystal violet staining. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression level was determined by western blot. mRNA expression level was measured by qPCR.Results: Our study showed that RSV improved NPCs’ cell viability. It also inhibited cell apoptosis and cell cycle arrest, which were accompanied by the increased expression level of heat shock protein 90 (HSP90) and N-Cadherin. What’ more, RSV also improved the NPCs’ degeneration which was reflected in the increase of extracellular matrix (collagen II, Aggrecan). Moreover, RSV significantly attenuated the level of IL-6 secretion, which was accompanied by less phosphorylation of the transcription factors janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3). Conclusion: RSV exerted its protective effect on HNPCs’ degeneration by improving cell survival and function. The possible mechanism may be associated with the suppression of JAK/STAT3 phosphorylation and the decreased IL-6 production, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK/STAT3 pathway.


2018 ◽  
Vol 243 (7) ◽  
pp. 595-600 ◽  
Author(s):  
Zhi Ruan ◽  
Hui Ma ◽  
Jing Li ◽  
Huiyong Liu ◽  
Haoruo Jia ◽  
...  

Intervertebral disc degeneration is a complex disease involving genetic and environmental factors and multiple cellular processes. The role and expression of the lncRNA NEAT1 were assessed in intervertebral disc degeneration. NEAT1 expression was assessed in degenerative and control nucleus pulposus using RT-PCR. Western blotting and RT-PCR were also used to investigate p53 and p21 levels in nucleus pulposus tissues. NEAT1 function in degenerative nucleus pulposus cells was assessed with gain- and loss-of-function experiments. ERK/MAPK signaling was also examined. NEAT1, p53, and p21 were dramatically upregulated in intervertebral disc degeneration. Furthermore, catabolic MMP13 and ADAMTS5 were dysregulated and collagen II and aggrecan were downregulated after NEAT1 overexpression. This effect was reversed by transfection with si-NEAT1 in degenerative nucleus pulposus cells. In addition, NEAT1 was found to affect the activation of the ERK/MAPK pathway. The NEAT1-induced ECM degradation may involve ERK1/2/MAPK signaling. LncRNA NEAT1 may represent a novel molecular target for intervertebral disc degeneration treatment by preventing nucleus pulposus ECM degradation. Impact statement For the first time, our study demonstrates that lncRNA NEAT1 plays a role in the occurrence and development of IDD by participating in extracellular matrix remodeling. This lncRNA regulates catabolic MMP13 and ADAMTS5 and anabolic collagen II and aggrecan by affecting the ERK/MAPK signaling pathway in degenerative human nucleus pulposus (NP) cells. Our research provides a scientific basis for targeting of NEAT1 for the IDD.


2019 ◽  
Vol 207 (3-4) ◽  
pp. 165-176
Author(s):  
Yan Zhang ◽  
Yi-Shu Zhang ◽  
Xiao-Juan Li ◽  
Chao-Rong Huang ◽  
Hui-Jin Yu ◽  
...  

Objective: To elaborate the mechanism of miR-150 in the regulation of the NF-κB signal pathway in intervertebral disc degeneration (IDD) by targeting P2X7. Methods: The degenerative and normal intervertebral disc tissues were collected to detect the expressions of miR-150 and P2X7. Nucleus pulposus cells were transfected and divided into different groups. Cell apoptosis was determined by flow cytometry and TUNEL staining. The expressions of IL-6, TNF-α, MMP-3, MMP-13, Cox-2, iNOS, collagen II and aggrecan, as well as NF-κB-associated proteins were measured by qRT-PCR and Western blotting. Furthermore, IDD rat models were established to validate the role of miR-150 in vivo.Results: miR-150 was down-regulated but P2X7 was up-regulated in the degenerative intravertebral disc tissues. The apoptosis of nucleus pulposus cells in the IL-1β-induced group with the transfection of miR-150 mimic and siP2X7 was significantly decreased, with reduced levels of IL-6, TNF-α, MMP-3, MMP-13, Cox-2 and iNOS, increased levels of collagen II and aggrecan, as well as decreased P2X7, p-p65/p65 and cleaved caspase-3. However, the above factors showed an opposite tendency after treatment with miR-150 inhibitor. Furthermore, the P2X7 siRNA transfection could reverse the effects caused by miR-150 inhibitor. Simultaneously, pcDNA P2X7 transfection also inhibited the function of miR-150 mimic in IL-1β-induced nucleus pulposus cells. In vivoexperiments further verified the protective role of miR-150 in IDD rats. Conclusion: miR-150 may alleviate the degeneration of the intervertebral disc partially since it could restrict the NF-κB pathway by targeting P2X7, and thereby inhibiting IL-1β-induced matrix catabolism, inflammatory responses and apoptosis of the nucleus pulposus cells.


2018 ◽  
Vol 46 (07) ◽  
pp. 1561-1580 ◽  
Author(s):  
Zengjie Zhang ◽  
Chenggui Wang ◽  
Jialiang Lin ◽  
Haiming Jin ◽  
Ke Wang ◽  
...  

Intervertebral disc degeneration (IDD) is a major cause of lower back pain, but few efficacious medicines have been developed for IDD. Increased nucleus pulposus cells apoptosis is a dominant pathogenesis of IDD and is considered a therapeutic target. Previously, our group proved that autophagy may protect nucleus pulposus cells against apoptosis. As one of the major bioflavonoids of citrus, naringin activates autophagy. Therefore, we hypothesize that naringin may have therapeutic potential for IDD by activating autophagy in nucleus pulposus cells. In this study, we evaluated the effects of naringin on TBHP-induced oxidative stress in nucleus pulposus cells in vitro as well as in puncture-induced rat IDD model in vivo. Our results showed that naringin could reduce the incidence of oxidative stress-induced apoptosis in nucleus pulposus cells and promoted the expression of autophagy markers LC3-II/I and beclin-1. Meanwhile, inhibition of autophagy by 3-MA may partially reverse the anti-apoptotic effect of naringin, indicating that autophagy was involved in the protective effect of naringin in nucleus pulposus cells. Further study showed that autophagy regulation of naringin may be related to AMPK signaling. Also, we found that naringin treatment can regulate the expression of collagen II, aggrecan and Mmp13 to sustain the extracellular matrix. Furthermore, our in vivo study showed that naringin can ameliorate IDD in puncture-induced rat model. In conclusion, our study suggests that naringin can protect nucleus pulposus cells against apoptosis and ameliorate IDD in vivo, the mechanism may relate to its autophagy regulation.


Sign in / Sign up

Export Citation Format

Share Document