scholarly journals Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum

Author(s):  
Ju Kyoung Oh ◽  
Edward Alain B. Pajarillo ◽  
Jong Pyo Chae ◽  
In Ho Kim ◽  
Dong Soo Yang ◽  
...  
Author(s):  
A Sikandar ◽  
H Zaneb ◽  
A Nasir ◽  
A Rehman ◽  
M Kashif ◽  
...  

The effect of Bacillus subtilis on the immune responses and morphometry of the immune organs was evaluated in broilers challenged with S. gallinarum.  For this purpose, Salmonella-free birds (n = 240) were split into four groups with six replicates of ten birds each. Groups included an NC (negative control, non-infected + non-medicated), a PC-S (positive control, Salmonella-infected + non-medicated), an AT-S (Salmonella-infected + medicated with enrofloxacin), and a BS-S (Salmonella-infected + B. subtilis (2.0 × 10<sup>10</sup> cfu/g; 0.1 g/kg) group. On day 21, the thickness of the thymus cortex and medulla, germinal centre area of the spleen, bursal follicular length and bursal follicular area increased (P &lt; 0.05) in the BS-S when compared to the NC and PC-S groups. On day 35, the BS-S group exhibited a higher (P &lt; 0.05) antibody titre against the Newcastle disease virus (NDV), and cortex of the thymus was thicker (P &lt; 0.05) compared to the other groups. A decrease in the thymus medulla thickness, germinal area of the spleen and bursal follicular number were noted in the PC-S group when compared to the other treatment groups. In conclusion, the prophylactic use of B. subtilis type probiotics alleviated the stress resulting from a Salmonella gallinarum infection and improved the immune organs development and function in infected broilers.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1494
Author(s):  
Sha Jiang ◽  
Fei-Fei Yan ◽  
Jia-Ying Hu ◽  
Ahmed Mohammed ◽  
Heng-Wei Cheng

The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.


2011 ◽  
Vol 91 (3) ◽  
pp. e87-e91 ◽  
Author(s):  
Kyung-Woo Lee ◽  
Guangxing Li ◽  
Hyun S. Lillehoj ◽  
Sung-Hyen Lee ◽  
Seung I. Jang ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 523-536
Author(s):  
Essam S. Soliman ◽  
Rania T. Hamad ◽  
Mona S. Abdallah

Background and Aim: Probiotics improve intestinal balance through bacterial antagonism and competitive exclusion. This study aimed to investigate the in vitro antimicrobial activity, as well as the in vivo preventive, immunological, productive, and histopathological modifications produced by probiotic Bacillus subtilis. Materials and Methods: The in vitro antimicrobial activities of B. subtilis (5×106 CFU/g; 0.5, 1.0*, 1.5, and 2.0 g/L) were tested against Escherichia coli O157: H7, Salmonella Typhimurium, Candida albicans, and Trichophyton mentagrophytes after exposure times of 0.25, 0.5, 1, and 2 h using minimal inhibitory concentration procedures. A total of 320 1-day-old female Ross broiler chickens were divided into five groups. Four out of the five groups were supplemented with 0.5, 1.0*, 1.5, and 2.0 g/L probiotic B. subtilis from the age of 1 day old. Supplemented 14-day-old broiler chickens were challenged with only E. coli O157: H7 (4.5×1012 CFU/mL) and S. Typhimurium (1.2×107 CFU/mL). A total of 2461 samples (256 microbial-probiotic mixtures, 315 sera, 315 duodenal swabs, and 1575 organs) were collected. Results: The in vitro results revealed highly significant (p<0.001) killing rates at all-time points in 2.0 g/L B. subtilis: 99.9%, 90.0%, 95.6%, and 98.8% against E. coli, S. Typhimurium, C. albicans, and T. mentagrophytes, respectively. Broilers supplemented with 1.5 and 2.0 g/L B. subtilis revealed highly significant increases (p<0.01) in body weights, weight gains, carcass weights, edible organs' weights, immune organs' weights, biochemical profile, and immunoglobulin concentrations, as well as highly significant declines (p<0.01) in total bacterial, Enterobacteriaceae, and Salmonella counts. Histopathological photomicrographs revealed pronounced improvements and near-normal pictures of the livers and hearts of broilers with lymphoid hyperplasia in the bursa of Fabricius, thymus, and spleen after supplementation with 2.0 g/L B. subtilis. Conclusion: The studies revealed that 1.5-2.0 g of probiotic B. subtilis at a concentration of 5×106 CFU/g/L water was able to improve performance, enhance immunity, and tissue architecture, and produce direct antimicrobial actions.


2015 ◽  
Vol 200 ◽  
pp. 76-85 ◽  
Author(s):  
Kyung-Woo Lee ◽  
Duk Kyung Kim ◽  
Hyun S. Lillehoj ◽  
Seung I. Jang ◽  
Sung-Hyen Lee

Sign in / Sign up

Export Citation Format

Share Document