Changes in the intestinal microbiota of broiler chickens under the influence of Bacillus subtilis GM5

Author(s):  
A.M. Mardanova ◽  
◽  
G.F. Khadieva ◽  
M.T. Lutfullin ◽  
M.R. Sharipova ◽  
...  
2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chianning Heng ◽  
Xihong Zhou ◽  
Guangtian Cao ◽  
Lei Jiang ◽  
...  

Abstract The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.


2019 ◽  
Vol 7 (3) ◽  
pp. 71 ◽  
Author(s):  
Cristiano Bortoluzzi ◽  
Bruno Serpa Vieira ◽  
Juliano Cesar de Paula Dorigam ◽  
Anita Menconi ◽  
Adebayo Sokale ◽  
...  

The objective of this study was to evaluate the effects of the dietary supplementation of Bacillus subtilis DSM 32315 (probiotic) on the performance and intestinal microbiota of broiler chickens infected with Clostridium perfringens (CP). One-day-old broiler chickens were assigned to 3 treatments with 8 replicate pens (50 birds/pen). The treatments were: non-infected control; infected control; and infected supplemented with probiotic (1 × 106 CFU/g of feed). On day of hatch, all birds were sprayed with a coccidia vaccine based on the manufacturer recommended dosage. On d 18–20 the infected birds were inoculated with CP via feed. Necrotic enteritis (NE) lesion score was performed on d 21. Digestive tract of 2 birds/pen was collected on d 21 to analyze the ileal and cecal microbiota by 16S rRNA sequencing. Performance was evaluated on d 28 and 42. On d 21, probiotic supplementation reduced (p < 0.001) the severity of NE related lesion versus infected control birds. On d 28, feed efficiency was improved (p < 0.001) in birds supplemented with probiotic versus infected control birds. On d 42, body weight gain (BW gain) and feed conversion ratio (FCR) were improved (p < 0.001) in probiotic supplemented birds versus infected control birds. The diversity, composition and predictive function of the intestinal microbial digesta changed with the infection but the supplementation of probiotic reduced these variations. Therefore, dietary supplementation of Bacillus subtilis DSM 32315 was beneficial in attenuating the negative effects of CP challenge on the performance and intestinal microbiota of broilers chickens.


2021 ◽  
Vol 9 (9) ◽  
pp. 1899
Author(s):  
Muhammad Bilal ◽  
Caroline Achard ◽  
Florence Barbe ◽  
Eric Chevaux ◽  
Jennifer Ronholm ◽  
...  

Mature and stable intestinal microbiota in chickens is essential for health and production. Slow development of microbiota in young chickens prolongs the precarious period before reaching mature configuration. Whether probiotics can play a role in the early maturation of intestinal microbiota is unknown. To address this, day-old chicks were assigned into six groups: NC (basal diet), PC (virginiamycin), low (BPL) and high-dose (BPH) of Bacillus pumilus, and low (BSL) and high-dose (BSH) of Bacillus subtilis. Cecal contents at days 7, 14, 28 and 42 were used to analyze the treatment and time effects on the diversity and composition of microbiota. Overall, the alpha diversity was significantly decreased in the NC group between days 7 and 14, while this decline was prevented in the Bacillus subtilis probiotic (BSL and BSH) and even reversed in the BPH group. The beta-diversity showed significant responses of microbial communities to probiotics in first two weeks of life. Analyses of the abundance of microbiota reflected that members of the family Ruminococcaceae (Ruminnococcus, Oscillospira, Faecalibacterium, Butyricicoccus, and Subdoligranulum), which were dominant in mature microbiota, were significantly higher in abundance at day 14 in the probiotic groups. Conversely, the abundance of genera within the family Lachnospiraceae (Ruminococcus, Blautia, and Coprococcus) was dominant in early dynamic microbiota but was significantly lower in the probiotic groups at day 14. The Lactobacillus and Bifidobacterium abundance was higher, while the Enterobacteriaceae abundance was lower in the probiotic groups. In summary, the probiotics efficiently helped the cecal microbiota reach mature configuration earlier in life. These results could be used for the future manipulation of microbiota from the perspective of improving poultry performance.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1494
Author(s):  
Sha Jiang ◽  
Fei-Fei Yan ◽  
Jia-Ying Hu ◽  
Ahmed Mohammed ◽  
Heng-Wei Cheng

The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Cédric M. Vogt ◽  
Monika Hilbe ◽  
Mathias Ackermann ◽  
Claudio Aguilar ◽  
Catherine Eichwald

2011 ◽  
Vol 91 (3) ◽  
pp. e87-e91 ◽  
Author(s):  
Kyung-Woo Lee ◽  
Guangxing Li ◽  
Hyun S. Lillehoj ◽  
Sung-Hyen Lee ◽  
Seung I. Jang ◽  
...  

2021 ◽  
Author(s):  
Dafei Yin ◽  
Youli Wang ◽  
Liqun Wang ◽  
Yuqin Wu ◽  
Xiaoyi Bian ◽  
...  

Abstract BackgroundThe use of newly harvested corn in feed causes wet droppings in broilers and increased feed cost which was termed as “new season grain problem”. The present study was conducted to evaluate the proteomic profile of newly harvested corn and the subsequent influence on intestinal microbiol community for broiler chickens. MethodsNewly harvested corn stored for either half a month (HM) or two months (TM) was used, and the pasting properties, total soluble sugars, and proteomic analysis technology was used to explore the influence of storage on natural aging corn properties. Additionally, seventy-two 7d Ross 308 male broiler chicken were fed with different stored corn. Apparent metabolizable energy (AME), digesta viscosity, intestinal morphology and microbiota were examined to explore the influence of feed corn storage on broiler chickens. ResultsPasting properties in the TM corn exhibited decreased viscoelastic properties. Proteomic studies found a total of 26 proteins that were differentially expressed between the two treatment groups. Proteins involved in starch and polysaccharides biosynthesis were upregulated in TM compared with HM. Chickens fed on TM diet had higher relative energy utilization compared to the HM birds. With increased corn storage, the relative digesta viscosity decreased significantly (P≤0.05). The total number of goblet cells and lymphocytes was lower in chickens fed the TM diet. The microbiota data showed that the TM chickens had decreased abundance of diarrheal bacteria such as Hungatella hathewayi and Bacteroides fragilis, and increased butyrate-producing bacteria such as Alistipes compared to the HM chickens. ConclusionsStorage of newly harvested corn induced the synthetic reaction of large molecules and changed the solubility of starch and protein with increasing soluble sugars and decreasing pasting properties that may improve the fermentation of intestinal microbiota, improve the energy utilization and protect gut health without the risk of diarrhea.


Sign in / Sign up

Export Citation Format

Share Document