scholarly journals Altered ribosomal function and protein synthesis caused by tau

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Harrison Tudor Evans ◽  
Deonne Taylor ◽  
Andrew Kneynsberg ◽  
Liviu-Gabriel Bodea ◽  
Jürgen Götz

AbstractThe synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function.

2014 ◽  
Vol 58 (4) ◽  
pp. 2038-2044 ◽  
Author(s):  
Yuan Lin ◽  
Yan Li ◽  
Ningyu Zhu ◽  
Yanxing Han ◽  
Wei Jiang ◽  
...  

ABSTRACTCapreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin.Mycobacterium tuberculosisribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 inM. smegmatis, a species close toM. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.


2020 ◽  
pp. 57-57
Author(s):  
Bogdan Jovanovic ◽  
Lisa Schubert ◽  
Fabian Poetz ◽  
Georg Stoecklin

Ribosomes, the catalytic machinery required for protein synthesis, are comprised of 4 ribosomal RNAs and about 80 ribosomal proteins in mammals. Ribosomes further interact with numerous associated factors that regulate their biogenesis and function. As mutations of ribosomal proteins and ribosome associated proteins cause many diseases, it is important to develop tools by which ribosomes can be purified efficiently and with high specificity. Here, we designed a method to purify ribosomes from human cell lines by C-terminally tagging human RPS9, a protein of the small ribosomal subunit. The tag consists of a flag peptide and a streptavidin-binding peptide (SBP) separated by the tobacco etch virus (TEV) protease cleavage site. We demonstrate that RPS9-Flag-TEV-SBP (FTS) is efficiently incorporated into the ribosome without interfering with regular protein synthesis. Using HeLa-GFP-G3BP1 cells stably expressing RPS9-FTS or, as a negative control, mCherry-FTS, we show that complete ribosomes as well as numerous ribosome-associated proteins are efficiently and specifically purified following pull-down of RPS9-FTS using streptavidin beads. This tool will be helpful for the characterization of human ribosome heterogeneity, post-translational modifications of ribosomal proteins, and changes in ribosome-associated factors after exposing human cells to different stimuli and conditions.


2019 ◽  
Vol 47 (15) ◽  
pp. 8193-8206 ◽  
Author(s):  
Isabelle Iost ◽  
Chaitanya Jain

Abstract DEAD-box proteins (DBPs) comprise a large family of proteins that most commonly have been identified as regulators of ribosome assembly. The Escherichia coli DBP, SrmB, represents a model bacterial DBP whose absence impairs formation of the large ribosomal subunit (LSU). To define the basis for SrmB function, suppressors of the ribosomal defect of ΔsrmB strains were isolated. The major class of suppressors was found to map to the 5′ untranslated region (UTR) of the rplM-rpsI operon, which encodes the ribosomal proteins (r-proteins) L13 and S9. An analysis of protein abundance indicated that both r-proteins are under-produced in the ΔsrmB strain, but are increased in these suppressors, implicating r-protein underproduction as the molecular basis for the observed ribosomal defects. Reduced r-protein synthesis was determined to be caused by intrinsic transcription termination within the rplM 5′ UTR that is abrogated by SrmB. These results reveal a specific mechanism for DBP regulation of ribosomal assembly, indirectly mediated through its effects on r-protein expression.


2005 ◽  
Vol 388 (3) ◽  
pp. 819-826 ◽  
Author(s):  
Yaroslav SYDORSKYY ◽  
David J. DILWORTH ◽  
Brendan HALLORAN ◽  
Eugene C. YI ◽  
Taras MAKHNEVYCH ◽  
...  

Ribosome biogenesis in Saccharomyces cerevisiae occurs primarily in a specialized nuclear compartment termed the nucleolus within which the rRNA genes are transcribed by RNA polymerase I into a large 35 S rRNA precursor. The ensuing association/dissociation and catalytic activity of numerous trans-acting protein factors, RNAs and ribosomal proteins ultimately leads to the maturation of the precursor rRNAs into 25, 5.8 and 18 S rRNAs and the formation of mature cytoplasmic 40 and 60 S ribosomal subunits. Although many components involved in ribosome biogenesis have been identified, our understanding of this essential cellular process remains limited. In the present study we demonstrate a crucial role for the previously uncharacterized nucleolar protein Nop53p (Ypl146p) in ribosome biogenesis. Specifically, Nop53p appears to be most important for biogenesis of the 60 S subunit. It physically interacts with rRNA processing factors, notably Cbf5p and Nop2p, and co-fractionates specifically with pre-60 S particles on sucrose gradients. Deletion or mutations within NOP53 cause significant growth defects and display significant 60 S subunit deficiencies, an imbalance in the 40 S:60 S ratio, as revealed by polysome profiling, and defects in progression beyond the 27 S stage of 25 S rRNA maturation during 60 S biogenesis.


2014 ◽  
Vol 71 (17) ◽  
pp. 3339-3361 ◽  
Author(s):  
Vanessa Liang ◽  
Milena Ullrich ◽  
Hong Lam ◽  
Yee Lian Chew ◽  
Samuel Banister ◽  
...  

Abstract Protein misfolding and aggregation as a consequence of impaired protein homeostasis (proteostasis) not only characterizes numerous age-related diseases but also the aging process itself. Functionally related to the aging process are, among others, ribosomal proteins, suggesting an intimate link between proteostasis and aging. We determined by iTRAQ quantitative proteomic analysis in C. elegans how the proteome changes with age and in response to heat shock. Levels of ribosomal proteins and mitochondrial chaperones were decreased in aged animals, supporting the notion that proteostasis is altered during aging. Mitochondrial enzymes of the tricarboxylic acid cycle and the electron transport chain were also reduced, consistent with an age-associated energy impairment. Moreover, we observed an age-associated decline in the heat shock response. In order to determine how protein synthesis is altered in aging and in response to heat shock, we complemented our global analysis by determining the de novo proteome. For that, we established a novel method that enables both the visualization and identification of de novo synthesized proteins, by incorporating the non-canonical methionine analogue, azidohomoalanine (AHA), into the nascent polypeptides, followed by reacting the azide group of AHA by ‘click chemistry’ with an alkyne-labeled tag. Our analysis of AHA-tagged peptides demonstrated that the decreased abundance of, for example, ribosomal proteins in aged animals is not solely due to degradation but also reflects a relative decrease in their synthesis. Interestingly, although the net rate of protein synthesis is reduced in aged animals, our analyses indicate that the synthesis of certain proteins such as the vitellogenins increases with age.


2014 ◽  
Vol 67 (12) ◽  
pp. 1019-1025 ◽  
Author(s):  
Farnaz Bahrami-B ◽  
Parvin Ataie-Kachoie ◽  
Mohammad H Pourgholami ◽  
David L Morris

The Rps6kb1 gene encodes the 70 kDa ribosomal protein S6 kinase (p70S6K), which is a serine/threonine kinase regulated by phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. p70S6K plays a crucial role in controlling cell cycle, growth and survival. The PI3K/mTOR signalling pathway is one of the major mechanisms for controlling cell survival, proliferation and metabolism and is the central regulator of translation of some components of protein synthesis system. Upon activation, this kinase phosphorylates S6 protein of ribosomal subunit 40S resulting in selective translation of unique family of mRNAs that contain oligopyrimidine tract on 5’ transcriptional site (5′TOP). 5′TOP mRNAs are coding the components of translational apparatus including ribosomal proteins and elongation factors. Due to the role of p70S6K in protein synthesis and also its involvement in a variety of human diseases ranging from diabetes and obesity to cancer, p70S6K is now being considered as a new therapeutic target for drug development. Furthermore, p70S6K acts as a biomarker for response to immunosuppressant as well as anticancer effects of inhibitors of the mTOR. Because of the narrow therapeutic index of mTOR inhibitors, drug monitoring is essential, and this is usually done by measuring blood drug levels, therapeutic response and drug-induced adverse effects. Recent studies have suggested that plasma p70S6K is a reliable index for the monitoring of patient response to mTOR inhibitors. Therefore, a better understanding of p70S6K and its role in various pathological conditions could enable the development of strategies to aid diagnosis, prognosis and treatment schedules.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
J.F. Hainfeld ◽  
J.S. Wall

The aim of this study is to understand the mechanism of 16S rRNA folding into the compact structure of the small 30S subunit of E. coli ribosome. The assembly of the 30S E. coli ribosomal subunit is a sequence of specific interactions of 16S rRNA with 21 ribosomal proteins (S1-S21). Using dedicated high resolution STEM we have monitored structural changes induced in 16S rRNA by the proteins S4, S8, S15 and S20 which are involved in the initial steps of 30S subunit assembly. S4 is the first protein to bind directly and stoichiometrically to 16S rRNA. Direct binding also occurs individually between 16S RNA and S8 and S15. However, binding of S20 requires the presence of S4 and S8. The RNA-protein complexes are prepared by the standard reconstitution procedure, dialyzed against 60 mM KCl, 2 mM Mg(OAc)2, 10 mM-Hepes-KOH pH 7.5 (Buffer A), freeze-dried and observed unstained in dark field at -160°.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kyle A. Cottrell ◽  
Ryan C. Chiou ◽  
Jason D. Weber

AbstractTumor cells require nominal increases in protein synthesis in order to maintain high proliferation rates. As such, tumor cells must acquire enhanced ribosome production. How the numerous mutations in tumor cells ultimately achieve this aberrant production is largely unknown. The gene encoding ARF is the most commonly deleted gene in human cancer. ARF plays a significant role in regulating ribosomal RNA synthesis and processing, ribosome export into the cytoplasm, and global protein synthesis. Utilizing ribosome profiling, we show that ARF is a major suppressor of 5′-terminal oligopyrimidine mRNA translation. Genes with increased translational efficiency following loss of ARF include many ribosomal proteins and translation factors. Knockout of p53 largely phenocopies ARF loss, with increased protein synthesis and expression of 5′-TOP encoded proteins. The 5′-TOP regulators eIF4G1 and LARP1 are upregulated in Arf- and p53-null cells.


Sign in / Sign up

Export Citation Format

Share Document