scholarly journals Plant-based nanoparticles prepared from protein containing tribenuron-methyl: fabrication, characterization, and application

Author(s):  
Moslem Heydari ◽  
Ali Reza Yousefi ◽  
Nasser Nikfarjam ◽  
Abbas Rahdar ◽  
George Z. Kyzas ◽  
...  

Abstract Background Tribenuron-methyl is a registered herbicide for broad-leaf weed control in wheat, however, low solubility in water and reacting with hard water's ions could substantially decrease its efficacy. The present work aimed to enhance the dispersing and bioactivity of this herbicide by developing nanoparticles using zein as a promising nano-delivery system and to assess the effects of nanoparticles on the efficacy of tribenuron-methyl in the suppression of Convolvulus arvensis as a problematic weed in wheat fields. Results Based on SEM analyses nanoparticles sizes were 80–120 nm. DLS results showed an average size of 170 nm for tribenuron-methyl zein-based nanoparticles (TMZNP-5). The entrapment efficiency (EE%) of tribenuron-methyl inside the zein nanoparticles was ca. 81% ± 3. Five-week after application of tribenuron-methyl nanoparticles on C. arvensis, it was able to reduce the dry weight (53%), acetolactate synthase (ALS) enzyme activity (82%), and plant height (77%) of C. arvensis as compared with untreated plants. Additionally, tribenuron-methyl used in nanoparticles at the half rate of the recommended dose had the same efficacy as commercial tribenuron-methyl. Conclusion Based on these results, zein nanoparticles can be potentially utilized as nanocarriers for enhancing the solubility of tribenuron-methyl to further enhance its bioavailability and performance on sensitive weeds. Graphic abstract

Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 424-432 ◽  
Author(s):  
Javid Gherekhloo ◽  
Zahra M. Hatami ◽  
Ricardo Alcántara-de la Cruz ◽  
Hamid R. Sadeghipour ◽  
Rafael De Prado

AbstractWild mustard (Sinapis arvensis L.) is a weed that frequently infests winter wheat (Triticum aestivum L.) fields in Golestan province, Iran. Tribenuron-methyl (TM) has been used recurrently to control this species, thus selecting for resistant S. arvensis populations. The objectives were: (1) to determine the resistance level to TM of 14 putatively resistant (PR) S. arvensis populations, collected from winter wheat fields in Golestan province, Iran, in comparison to one susceptible (S) population; and (2) to characterize the resistance mechanisms and the potential evolution of cross-resistance to other classes of acetolactate synthase (ALS)-inhibiting herbicides in three populations (AL-3, G-5, and Ag-Sr) confirmed as being resistant (R) to TM. The TM doses required to reduce the dry weight of the PR populations by 50% were between 2.2 and 16.8 times higher than those needed for S plants. The ALS enzyme activity assays revealed that the AL-3, G-5, and Ag-Sr populations evolved cross-resistance to the candidate ALS-inhibiting herbicides from the sulfonylureas (SU), triazolopyrimidines (TP), pyrimidinyl-thiobenzoates (PTB), sulfonyl-aminocarbonyl-triazolinone (SCT), and imidazolinones (IMI) classes. No differences in absorption, translocation, or metabolism of [14C]TM between R and S plants were observed, suggesting that these non-target mechanisms were not responsible for the resistance. The ALS gene of the R populations contained the Trp-574-Leu mutation, conferring cross-resistance to the SU, SCT, PTB, TP, and IMI classes. The Trp-574-Leu mutation in the ALS gene conferred cross-resistance to ALS-inhibiting herbicides in S. arvensis from winter wheat fields in Golestan province. This is the first TM resistance case confirmed in this species in Iran.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2890
Author(s):  
Ine Suharyani ◽  
Muchtaridi Muchtaridi ◽  
Ahmed Fouad Abdelwahab Mohammed ◽  
Khaled M. Elamin ◽  
Nasrul Wathoni ◽  
...  

α-Mangostin (α-M) has various biological activities, such as anti-cancer, antibacterial, anti-fungal, anti-tyrosin, anti-tuberculosis, anti-inflammatory, and antioxidant. However, it has very low solubility in water. The formulation of this compound requires high amounts of solubilizers, which limits its clinical application. In addition, its low solubility in water is a barrier to the distribution of this drug, thus affecting its potency. Cyclodextrin (CD) is widely used as a solubility enhancer of poorly soluble drugs. This study aimed to increase the solubility of α-M in water through complex formation with CD. The complex of α-Mangostin and γ-Cyclodextrin (α-M/γ-CD CX) was prepared by the solubilization method, resulting in a solubility improvement of α-M in water. Characterization of α-M/γ-CD CX by using FTIR-Spectrometry, XRD, H-, C-, and HMBC-NMR showed that α-M was able to form an inclusion complex with γ-CD. The complex yielded an entrapment efficiency of 84.25 and the thermodynamic study showed that the α-M/γ-CD CX was formed spontaneously, based on the negative values of Gibbs energy and ΔH. Interestingly, the solubility of α-M/γ-CD CX significantly increased by 31.74-fold compared with α-M. These results suggest that α-M/γ-CD CX has the potential in the formulation of water-based preparation for clinical applications.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 389-398
Author(s):  
Parsa Tehranchian ◽  
Jason K. Norsworthy ◽  
Matheus Palhano ◽  
Nicholas E. Korres ◽  
Scott McElroy ◽  
...  

A yellow nutsedge biotype (Res) from an Arkansas rice field has evolved resistance to acetolactate synthase (ALS)-inhibiting herbicides. TheResbiotype previously exhibited cross-resistance to ALS inhibitors from four chemical families (imidazolinone, pyrimidinyl benzoate, sulfonylurea, and triazolopyrimidine). Experiments were conducted to evaluate alternative herbicides (i.e., glyphosate, bentazon, propanil, quinclorac, and 2,4-D) currently labeled in Arkansas rice–soybean production systems. Based on the percentage of aboveground dry weight reduction, control of the yellow nutsedge biotypes with the labeled rate of bentazon, propanil, quinclorac, and 2,4-D was < 44%. Glyphosate (867 g ae ha−1) resulted in 68 and > 94% control of theResand susceptible yellow nutsedge biotypes, respectively, at 28 d after treatment. Dose-response studies were conducted to estimate the efficacy of glyphosate on theResbiotype, three susceptible yellow nutsedge biotypes, and purple nutsedge. Based on the dry weights, theResbiotype was ≥ 5- and ≥ 1.3-fold less responsive to glyphosate compared to the susceptible biotypes and purple nutsedge, respectively. Differences in absorption and translocation of radiolabeled glyphosate were observed among the yellow nutsedge biotypes and purple nutsedge. The susceptible biotype had less14C-glyphosate radioactivity in the tissues above the treated leaf and greater radioactivity in tissues below the treated leaf compared to theResbiotype and purple nutsedge. Reduced translocation of glyphosate in tissues below the treated leaf of theResbiotype could be a reason for the lower glyphosate efficacy in theResbiotype. No amino acid substitution that would correspond to glyphosate resistance was found in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene of theResbiotype. However, an amino acid (serine) addition was detected in the EPSPS gene of theResbiotype; albeit, it is not believed that this addition contributes to lower efficacy of glyphosate in this biotype.


2021 ◽  
Author(s):  
Sunil Soni ◽  
Samunder Singh ◽  
Rajbir Garg

Rumex spp. is most dominating broad-leaf weed of wheat crop. Complaints of poor efficacy of different herbicides against Rumex spp. have reported recently from different locations of Haryana state. Therefore, the present study was carried out under completely randomised design, replicated thrice, using three different herbicides namely carfentrazone + metsulfuron, sulfosulfuron + metsulfuron and halauxifen as treatments applied with three doses against four populations of Rumex spp. Plant height, chlorophyll fluorescence, electrical conductivity, mortality percentage and dry weight were recorded as observations. Results indicated that most of the Rumex biotypes were found resistant against sulfosulfuron + metsulfuron application. Majority of biotypes were moderately controlled by the application of halauxifen. Carfentrazone + metsulfuron effectively controlled the Rumex spp. and provided 70-90 % control to all biotypes at double of the recommended dose. As per results of this study, carfentrazone + metsulfuron can be recommended for control of Rumex spp. in wheat.


Author(s):  
O. I. Ostrikova ◽  
O. E. Vaizova ◽  
O. I. Aliev ◽  
E. V. Buravlev ◽  
I. Yu. Chukicheva ◽  
...  

Introduction. The potential of a new compound in the ongoing drugs discovery process is initially explored using virtual instruments, where its activity is predicted based on its molecular structure.Aim. This study aimed to evaluate the pharmacokinetic parameters and possible toxicity of isobornyl compounds based on virtual tools.Material and Methods. Several free Internet resources were used to assess the absorption, distribution, metabolism, excretion (ADME), and toxicity (T) of 2,6-diisobornyl-4-methylphenol (1, Dibornol), 2-hydroxy-3-isobornyl-5-methylbenzaldehyde (2), and 2-((di-n-butylamino) methyl)-6-isobornyl-4-methylphenol (3). Pharmacokinetic properties were calculated on ADMETlab platform. Toxicity and physical properties were evaluated using TEST software based on the structure-property quantification models of organic substances according to structure–property principle. Web server ProTox_II was used for acute toxicity assessment.Results. Plasma protein binding degrees were 76,9% for (1), 85,9% for (2), and 91,8% for (3). All three compounds were capable of penetrating the blood-brain barrier. Dibornol was identified neither as a substrate nor as an inhibitor of P-glycoprotein unlike (2) and (3). The half-life of all compounds was short (about 2 hours); the clearance was slow (about 2 mL/min*kg). The study showed that (2) and (3) potentially exert the toxic effects during the developmental stage of the organism, while ADMETlab showed potential cardio- and hepatotoxicity for (2) and (3), respectively. All compounds had extremely low solubility in water, which affected the assessments of other indicators by TEST software. The ProTox_II server showed the extremely low toxicity LD50 for all compounds (toxicity class 5).


Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
◽  
Emilia Tojo

The transformation of two solid Active Pharmaceutical Ingredients (APIs) into new ionic liquids (IL)s that incorporate APIs (API-ILs) is reported. The structures of the APIs (indomethacin and mebendazole) were selected by their susceptibility to being transformed into API-ILs (either to form the cation or the anion) and their limited bioavailability due to their low solubility in water. The counterions, such as those derived from 2-dimethylaminoethanol (DMEA), tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-diazabicyclo[2.2.2] (TED), <i>p</i>-toluensulfonic acid, glycolic acid, methanesulfonic acid, and saccharin, were carefully chosen, aiming for high biocompatibility, low toxicity, and high water solubility. The synthesis was carried out by direct treatment of the API with the corresponding selected acid or base. Finally, the solubility in water of all the synthesized salts was determined.


2014 ◽  
Vol 902 ◽  
pp. 70-75 ◽  
Author(s):  
Aroonsri Priprem ◽  
Vassana Netweera ◽  
Pramote Mahakunakorn ◽  
Nutjaree Pratheepawanit Johns ◽  
Jeffrey Roy Johns

Melatonin, encapsulated and non-encapsulated, in a topical gel, was comparatively investigated for its in vitro permeation and in vivo anti-inflammatory properties. An average size of the melatonin-encapsulated niosomes of 197 nm with a zeta potential of-78.8 mV and an entrapment efficiency of 92.7% was incorporated into a gel base. In vitro skin permeation of the same gel base incorporated with non-encapsulated melatonin or melatonin niosomes at 5% was comparatively evaluated through porcine skin using Franz diffusion cells and analyzed by spectroflurometry at λex 278 and λem 348 nm. From the same gel base, the permeation rate of non-encapsulated melatonin was about 2.5 times greater than that of melatonin-encapsulated niosomes. In comparison to piroxicam gel and hydrocortisone cream used as the positive controls, topical applications of melatonin and melatonin niosome gels tested in croton oil-induced ear edema in mice suggested that its anti-inflammatory activities were prolonged by the niosomal encapsulation. Similarly, analgesic effect of melatonin was prolonged by niosomal encapsulation using tail flick test in mice. Therefore, its immediate permeation through the skin was retarded by niosomal encapsulation which could also prolong its rapid decline in exerting anti-inflammatory and analgesic activities in vivo.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2322
Author(s):  
Martin Kellert ◽  
Imola Sárosi ◽  
Rajathees Rajaratnam ◽  
Eric Meggers ◽  
Peter Lönnecke ◽  
...  

Ruthenium-based complexes have received much interest as potential metallodrugs. In this work, four RuII complexes bearing a dicarbollide moiety, a carbonyl ligand, and a phenanthroline-based ligand were synthesized and characterized, including single crystal diffraction analysis of compounds 2, 4, and 5 and an observed side product SP1. Complexes 2–5 are air and moisture stable under ambient conditions. They show excellent solubility in organic solvents, but low solubility in water.


Sign in / Sign up

Export Citation Format

Share Document