scholarly journals Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize

Author(s):  
Shakeel Ahmad ◽  
Guo Yun Wang ◽  
Ihsan Muhammad ◽  
Saqib Farooq ◽  
Muhammad Kamran ◽  
...  

Abstract Background Melatonin played an essential role in numerous vital life processes of animals and captured the interests of plant biologists because of its potent role in plants as well. As far as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and a direct free radical scavenger/indirect antioxidant. The objective of this study to identify a precise melatonin concentration for a particular application method to improve plant growth requires identification and clarification. Methods This work establishes unique findings by optimizing melatonin concentration in alleviating the detrimental effects of drought stress in maize. Maize plants were subjected to drought stress (40–45% FC) after treatments of melatonin soil drenching at different concentrations (50, 100, and 150 µM) to consider the changes of growth attribute, chlorophyll contents, photosynthetic rate, relative water content (RWC), chloroplast ultrastructure, endogenous hormonal mechanism, and grain yield. Results Our results showed that the application of melatonin treatments remarkably improved the plant growth attributes, chlorophyll contents, photosynthetic rate, RWC, hormonal mechanism, and grain yield plant−1 under drought conditions at a variable rate. Conclusion Our current findings hereby confirmed the mitigating potential of melatonin application 100 µM for drought stress by maintaining plant growth, hormone content, and grain yield of maize. We conclude that the application of melatonin to maize is effective in reducing drought stress tolerance. Graphical Abstract

Author(s):  
Dong Van Nguyen ◽  
Huong Mai Nguyen ◽  
Nga Thanh Le ◽  
Kien Huu Nguyen ◽  
Hoa Thi Nguyen ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260960
Author(s):  
Muhammad Mahran Aslam ◽  
Fozia Farhat ◽  
Mohammad Aquil Siddiqui ◽  
Shafquat Yasmeen ◽  
Muhammad Tahir Khan ◽  
...  

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10–67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 343 ◽  
Author(s):  
Muhammad Zafar-ul-Hye ◽  
Subhan Danish ◽  
Mazhar Abbas ◽  
Maqshoof Ahmad ◽  
Tariq Muhammad Munir

Drought stress retards wheat plant’s vegetative growth and physiological processes and results in low productivity. A stressed plant synthesizes ethylene which inhibits root elongation; however, the enzyme 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase catabolizes ethylene produced under water stress. Therefore, the ACC deaminase producing plant growth promoting rhizobacteria (PGPR) can be used to enhance crop productivity under drought stress. Biochar (BC) is an organically active and potentially nutrient-rich amendment that, when applied to the soil, can increase pore volume, cation exchange capacity and nutrient retention and bioavailability. We conducted a field experiment to study the effect of drought tolerant, ACC deaminase producing PGPR (with and without timber waste BC) on plant growth and yield parameters under drought stress. Two PGPR strains, Agrobacterium fabrum or Bacillus amyloliquefaciens were applied individually and in combination with 30 Mg ha−1 BC under three levels of irrigation, i.e., recommended four irrigations (4I), three irrigations (3I) and two irrigations (2I). Combined application of B. amyloliquefaciens and 30 Mg ha−1 BC under 3I, significantly increased growth and yield traits of wheat: grain yield (36%), straw yield (50%), biological yield (40%). The same soil application under 2I resulted in greater increases in several of the growth and yield traits: grain yield (77%), straw yield (75%), above- and below-ground biomasses (77%), as compared to control; however, no significant increases in chlorophyll a, b or total, and photosynthetic rate and stomatal conductance in response to individual inoculation of a PGPR strain (without BC) were observed. Therefore, we suggest that the combined soil application of B. amyloliquefaciens and BC more effectively mitigates drought stress and improves wheat productivity as compared to any of the individual soil applications tested in this study.


2020 ◽  
Vol 47 (4) ◽  
pp. 303
Author(s):  
Jing Zhang ◽  
Jianming Xie ◽  
Yantai Gan ◽  
Jeffrey A. Coulter ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5–50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 187 ◽  
Author(s):  
Muhammad Kamran ◽  
Shakeel Ahmad ◽  
Irshad Ahmad ◽  
Izhar Hussain ◽  
Xiangping Meng ◽  
...  

In the present study, we examined the potential role of paclobutrazol in delaying leaf senescence, in causing changes in the activities of antioxidants, and in the maintenance of photosynthetic activity during the senescence process, and, therefore, on the grain yield of maize under semiarid field conditions. Maize seeds were pretreated with 0 (CK), 200 (PS1), 300 (PS2), and 400 (PS3) mg paclobutrazol L−1. Our results indicated that elevated levels of reactive oxygen species (ROS) and higher accumulation of malondialdehyde (MDA) contents were positively associated with accelerated leaf senescence during the grain-filling periods. The leaf senescence resulted in the disintegration of the photosynthetic pigments and reduced the net photosynthetic rate after silking. However, the resultant ROS burst (O2− and H2O2) was lessened and the leaf senescence and chlorophyll degradation were evidently inhibited in leaves of paclobutrazol-treated maize plants, which was strongly linked with upregulated activities of antioxidant enzymes in treated plants. The enhanced chlorophyll contents and availability of a greater photosynthetic active green leaf area during the grain filling period facilitated the maintenance of higher photosynthetic rate, and light-harvesting efficiency of photosynthesis associated with photosystem II (PSII) resulted in higher kernel number ear−1 and thousand kernel weights, and thus increased the final grain yield. The average maize grain yield was increased by 18.8% to 55.6% in paclobutrazol treatments, compared to untreated control. Among the various paclobutrazol treatments, PS2 (300 mg L−1) treatment showed the most promising effects on enhancing the activities of antioxidative enzymes, delaying leaf senescence and improving the yield of maize. Thus, understanding this effect of paclobutrazol on delaying leaf senescence introduces new possibilities for facilitating yield improvement of maize under semiarid conditions.


2020 ◽  
Vol 53 (9-10) ◽  
pp. 425-439
Author(s):  
Mahreen Yahya ◽  
Noor Abid Saeed ◽  
Sajid Nadeem ◽  
Muhammad Hamed ◽  
Kamran Saleem

Author(s):  
R. Sivakumar ◽  
P. Parasuraman ◽  
M. Vijayakumar

Background: Foxtail millet is one of the nutri-cereal foods for the people of semi arid regions. Proper nutrient management and source-sink alteration are major keys for achieving higher productivity in millets. However, potassium is not recommended to foxtail millet and the potential yield is not exploited. And also the study of source-sink alteration in foxtail millet by using plant growth regulators is meager. Methods: An experiment was conducted to study the impact of plant growth retardants viz., chlormequat chloride (CCC) and mepiquat chloride (MC) with the nutrient potassium (K2SO4 - 1%) on growth, gas exchange parameters and grain yield of foxtail millet under rainfed condition. Plant growth retardants with potassium consortium were used as foliar spray at flower initiation stage under field condition. Standard methods were used to measure the plant height, root length, number of leaves, LAD, CGR and grain yield. The photosynthetic rate, transpiration rate and leaf temperature were measured by using the instrument PPS. Result: Foliar spray of CCC (250 ppm) with 1% K2SO4 showed supremacy to enhance crop growth rate, leaf area duration, photosynthetic rate, transpiration rate and grain yield compared to other treatments. However, lowest plant height (100.7 cm) and number of leaves were observed by CCC (250 ppm) alone. Highest photosynthetic rate (26.84) and transpiration rate (17.94) were registered by CCC + K2SO4. Lowest leaf temperature of 34.1ºC was registered by 1% K2SO4 compared to control (35.6°C). CCC with K2SO4 recorded highest LAD value of 46.1 which is on par with K2SO4 alone (45.9). CCC with K2SO4 registered highest grain yield of 2.13 t ha-1 with increased yield of 18.3% over control. However, highest benefit cost ratio of ratio of 2.75 was recorded by 1% K2SO4 alone.


2021 ◽  
Author(s):  
Fangyuan Bian ◽  
Yukui Wang ◽  
Baoli Duan ◽  
Zhizhuang Wu ◽  
Yuanbing Zhang ◽  
...  

Abstract Background: The decrease of Cunninghamia lanceolata (Lamb.) production on continually planted soil is an essential problem. In this study, two cultivars (a normal cultivar, NC, and a super cultivar, SC) with two-year-old seedlings were grown in two types of soil (non-planting of Chinese fir, NP soil; continuous planting of Chinese fir, CP soil) with three watering regimes, and the interaction effects on plant growth and physiological traits were investigated. Results: The water contents of normal water control (CK), medium water content (MWC) and low water content (LWC) soil reached 75%-80%, 45%-50% and 20%-25%, respectively, of the field water capacity. The results indicated that both CP soil and LWC soil had negative effects on growth and physiological traits. In both cultivars, CP soil significantly decreased plant growth and the performance of physiological traits. The LWC soil changed the ecological stoichiometry in the three organs, induced oxidative stress, promoted water use efficiency and damaged chloroplast ultrastructure. Compared with NC, the SC cultivar was more tolerant to CP soil and drought stress. Conclusions: The CP soil shows negative effect on C. lanceolata’s physiological traits, and these effects can be exacerbated by drought stress. Therefore, the utilization of continuous planted soil can cultivate improved varieties of C. lanceolata and maintain water capacity. This can improve their growth and physiological performance to a certain extent.


2020 ◽  
Vol 47 (5) ◽  
pp. 473
Author(s):  
Jing Zhang ◽  
Jianming Xie ◽  
Yantai Gan ◽  
Jeffrey A. Coulter ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5–50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.


Scientifica ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Fawad Ali ◽  
Naila Kanwal ◽  
Muhammmad Ahsan ◽  
Qurban Ali ◽  
Irshad Bibi ◽  
...  

This study was carried out to evaluate F1 single cross-maize hybrids in four crop growing seasons (2010–2012). Morphological traits and physiological parameters of twelve maize hybrids were evaluated (i) to construct seed yield equation and (ii) to determine grain yield attributing traits of well-performing maize genotype using a previously unexplored method of two-way hierarchical clustering. In seed yield predicting equation photosynthetic rate contributed the highest variation (46%). Principal component analysis data showed that investigated traits contributed up to 90.55% variation in dependent structure. From factor analysis, we found that factor 1 contributed 49.6% variation (P<0.05) with primary important traits (i.e., number of leaves per plant, plant height, stem diameter, fresh leaves weight, leaf area, stomata conductance, substomata CO2absorption rate, and photosynthetic rate). The results of two-way hierarchical clustering demonstrated that Cluster III had outperforming genotype H12(Sultan × Soneri) along with its most closely related traits (photosynthetic rate, stomata conductance, substomata CO2absorption rate, chlorophyll contents, leaf area, and fresh stem weight). Our data shows that H12(Sultan × Soneri) possessed the highest grain yield per plant under environmentally stress conditions, which are most likely to exist in arid and semiarid climatic conditions, such as in Pakistan.


Sign in / Sign up

Export Citation Format

Share Document