Promoting pepper (Capsicum annuum) photosynthesis via chloroplast ultrastructure and enzyme activities by optimising the ammonium to nitrate ratio

2020 ◽  
Vol 47 (4) ◽  
pp. 303
Author(s):  
Jing Zhang ◽  
Jianming Xie ◽  
Yantai Gan ◽  
Jeffrey A. Coulter ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5–50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.

2020 ◽  
Vol 47 (5) ◽  
pp. 473
Author(s):  
Jing Zhang ◽  
Jianming Xie ◽  
Yantai Gan ◽  
Jeffrey A. Coulter ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5–50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photosynthetic photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2020 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance, and in recent years, LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to different wavelengths of light. Thus, the influence of artificial light on photosynthesis requires further investigation to provide theoretical guidelines for the light environments used in industrial crop production. In this study, we tested the effects of different LEDs (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m 2 ·s) on the growth, development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion ( Allium fistulosum L.) plants. Results: Plants in the W and B treatments had significantly higher height, leaf area, and fresh weight than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate ( P n ) in the W treatment were significantly higher than those in the monochromatic light treatments, the transpiration rate ( E ) and stomatal conductance ( G s ) were the highest in the B treatment, and the intercellular CO 2 concentration ( C i ) was the highest in the Y treatment. The non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, but the other chlorophyll fluorescence characteristics differed among treatments in the following order: W > B > R > G > Y. This includes the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv′/Fm′), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR). Finally, the leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: White and blue light significantly improved the photosynthetic efficiency of Welsh onions, whereas yellow light reduced the photosynthetic efficiency.


Author(s):  
R. Sivakumar ◽  
P. Parasuraman ◽  
M. Vijayakumar

Background: Foxtail millet is one of the nutri-cereal foods for the people of semi arid regions. Proper nutrient management and source-sink alteration are major keys for achieving higher productivity in millets. However, potassium is not recommended to foxtail millet and the potential yield is not exploited. And also the study of source-sink alteration in foxtail millet by using plant growth regulators is meager. Methods: An experiment was conducted to study the impact of plant growth retardants viz., chlormequat chloride (CCC) and mepiquat chloride (MC) with the nutrient potassium (K2SO4 - 1%) on growth, gas exchange parameters and grain yield of foxtail millet under rainfed condition. Plant growth retardants with potassium consortium were used as foliar spray at flower initiation stage under field condition. Standard methods were used to measure the plant height, root length, number of leaves, LAD, CGR and grain yield. The photosynthetic rate, transpiration rate and leaf temperature were measured by using the instrument PPS. Result: Foliar spray of CCC (250 ppm) with 1% K2SO4 showed supremacy to enhance crop growth rate, leaf area duration, photosynthetic rate, transpiration rate and grain yield compared to other treatments. However, lowest plant height (100.7 cm) and number of leaves were observed by CCC (250 ppm) alone. Highest photosynthetic rate (26.84) and transpiration rate (17.94) were registered by CCC + K2SO4. Lowest leaf temperature of 34.1ºC was registered by 1% K2SO4 compared to control (35.6°C). CCC with K2SO4 recorded highest LAD value of 46.1 which is on par with K2SO4 alone (45.9). CCC with K2SO4 registered highest grain yield of 2.13 t ha-1 with increased yield of 18.3% over control. However, highest benefit cost ratio of ratio of 2.75 was recorded by 1% K2SO4 alone.


Author(s):  
Fredy Colpas- Castillo ◽  
Arnulfo Tarón Dunoyer ◽  
Jairo Mercado Camargo

The Humic substance has been recognized widely as a plant growth promoter because they induce changes in root, architecture and dynamics of growth which result in larger root size. The aim of this study was evaluating the effect Humic acids on the chili pepper (Capsicum annuum) and eggplant (Solanum melongena) plants growing in soils fertilized with urea. 200 g of soil were incorporated to the fertilizer once and the Humic acid in concentrations of 0.05%, 0.1% and 0.2%. All measurements growths were carried out during 45 days growth. The finding shows that all treatments cause significant increases (p < 0.05) in the total area of roots. For the chili pepper, the multiple comparison tests of Tukey and Dunnett showed that there was a statistically significant difference between the control soils and the soils containing 0.1% and 0.2% of Humic acid. By the opposite, no statistical differences (p > 0.05) were observed among control soil and those containing 0.05 % of Humic acid. Concerning the eggplant, significant differences were established (p<0.05) between the control and samples incorporated with 0.1% and 0.2% of Humic acid. The Humic acids act as a growth biostimulant in chili pepper plants (Capsicum annuum) and eggplant (Solanum melongena).


2012 ◽  
Vol 2 (2) ◽  
pp. 24 ◽  
Author(s):  
Jie Zhou ◽  
Lei Fang ◽  
Xiao Wang ◽  
Lanping Guo ◽  
Luqi Huang

<p>Smoke-water (SW) had been reported to improve the growth of <em>Isatis indigotica</em>, a Chinese medicinal plant. However, there were very few reports on the mechanism of smoke-water improving plant growth. In this study the effects of smoke-water on the photosynthetic characteristics of <em>I.</em><em> indigotica</em> seedlings were investigated for the purpose of understanding the mechanism behind this improved plant growth. The results showed that net photosynthetic rate (<em>P<sub>n</sub></em>) was increased by smoke-water, reaching a maximum on 15, 5 and 15 d after treatment with smoke-water at dilutions of 1:500, 1:1000 and 1:2000 respectively. Transpiration rate (<em>T<sub>r</sub></em>) and stomatal conductance (<em>G<sub>s</sub></em>) both showed similar trends to<sub> </sub><em>P<sub>n</sub></em>, however, intercellular CO<sub>2</sub> concentration<em> </em>(<em>C<sub>i</sub></em>) was decreased with smoke-water treatment. The F<sub>v</sub>/F<sub>m</sub> was not significantly influenced by smoke-water treatment. The ?PSII was markedly promoted with the application of smoke-water (1:1000) compared with the control and the coefficient of photochemical quenching (qP) showed a similar trend to ?PSII. However the coefficient of non-photochemical quenching of chlorophyll (NPQ) was decreased with treatment of smoke-water. These findings indicate that smoke-water treatment induce an increase in photosynthesis and suggest the main factors leading to this might be the improved stomatal conductance and the enhanced level of the photochemical efficiency of PSII in leaves.</p>


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to theirphotosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the sama photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. Results: The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic ratein the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. Results: The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


Author(s):  
Xiaofu Zhou ◽  
Silin Chen ◽  
Hui Wu ◽  
Hongwei Xu

Rhododendron chrysanthum Pall., live in Changbai Mountain being exposed to chilling temperature, high light intensities and water scarcity condition. To adapt to the harsh environment, the cold resistance mechanisms of R. chrysanthum have been successfully evolved in the long-term adaptive process. In our present work, the methods of proteomics combined with physiological and biochemical analyses were used to investigate the effects of cold stress on the photosynthesis and antioxidant system of Rhododendron chrysanthum Pall. and the molecular mechanisms involved in cold resistance of plants. A total of 153 photosynthesis related proteins were identified in present work, of which 7 proteins including Rubisco large subunit (rbcL) were up-regulated in experiment group (EG) compared with control group (CG). Simultaneously, four chlorophyll fluorescence parameters were measured in present study. The results showed that the maximum photochemical efficiency of photosystem II (Fv/Fm), actual quantum yield of PSII (Y(II)) and photochemical quenching (qP) were significantly higher in EG, whereas the non-photochemical quenching (NPQ) was notably decreased. Cold stress could lead to a significant reduction in electron transport rate (ETR) accompanied with an increase in excitation pressure (1-qP). The abundance of PetE which involved in the plants photosynthetic electron transfer was also significantly influenced by cold stress. Moreover, the up-regulated expressions and higher levels of enzymatic activities of Glutathione peroxidase (GPX) and Ascorbate peroxidases (APXs) were detected in EG. All these changes which can help plants to survive in low temperature are considered as the crucial parts of cold tolerance mechanisms. These results revealed that photosynthesis and redox adjustment play significant roles in the defense of cold-induced damage.


2021 ◽  
Vol 25 (04) ◽  
pp. 863-872
Author(s):  
Yong Li

Photosynthetic characteristics and expression patterns of the photosynthesis-related genes in the high-yield mulberry variety E’Sang 1 (E1) and normal mulberry variety Husang 32 (H32) were investigated in this study. The observation of daily variation of photosynthesis in E1 and H32 indicated that the peak of net photosynthetic rate(Pn)inE1 variety was significantly higher than that inH32 (P <0.05). Meanwhile, the Pn-PAR and Pn-Ci responses of E1 and H32 were evaluated, and the results showed that the carboxylation efficiency and compensation saturation point were much higher in E1 rather thanH32. Importantly, the photosystem II actual photochemical efficiency and photochemical quenching coefficient in the leaves of E1 were significantly higher than those in H32 (P<0.05). Also, the activity of RuBP in E1 was higher than that in H32 (P >0.05). Based on the RNA-seq data, a total of 3,356 differentially expressed genes (DEGs) were detected among different time points between E1 and H32. Of these, 1,136 DEGs were involved in the metabolic pathways, including three main photosynthesis-related metabolic pathways (i.e., carbon fixation in photosynthetic organisms, carbon metabolism, and porphyrin and chlorophyll metabolism). Meanwhile, 10 novel DEGs related to photosynthesis were detected, and four potential key genes of them could account for the differences in net photosynthetic rate and yield betweenH32 and E1.This study could provide important insights into the molecular breeding of mulberry varieties with high photosynthetic efficiency and contribute to understanding the genetic mechanism of photosynthesis.© 2021 Friends Science Publishers


Sign in / Sign up

Export Citation Format

Share Document