scholarly journals Determination of tyrosine by sodium fluorescein-enhanced ABEI–H2O2–horseradish peroxidase chemiluminescence

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bin Dong ◽  
Qian Fan ◽  
Ming Li ◽  
Yanfu Huan ◽  
Guodong Feng ◽  
...  

AbstractIn this study, N-(4-aminobutyl)-N-ethylisoluminol (ABEI) was used as an energy donor, while sodium fluorescein was used as an enhancer and energy acceptor, which resulted in it producing resonance energy transfer and greatly increasing the strength of chemiluminiscence (CL). When horseradish peroxidase (HRP) is added, hydrogen peroxide (H2O2) will quickly separate into hydroxyl radicals (·OH) and superoxide ions (O2·−). If tyrosine (Tyr) is present in the system, the hydroxyl group on the benzene ring of Tyr robs ·OH and O2·− in the CL system, thereby reducing the intensity of CL. Based on this phenomenon, a luminescence system of ABEI and sodium fluorescein system was established to detect Tyr for the first time. This method has an ultra-low detection limit and a wide linear range, and is cheap and easy to operate. Under various optimal conditions, the linear range is from 3.0×10−8 to 3.0×10−5 mol/L, and the limit of detection is 2.4×10−8 mol/L. It has been successfully used in the detection of dairy products with satisfactory results.

2000 ◽  
Vol 275 (47) ◽  
pp. 37048-37054 ◽  
Author(s):  
Hui-hua Li ◽  
Douglas S. Lyles ◽  
Michael J. Thomas ◽  
Wei Pan ◽  
Mary G. Sorci-Thomas

2021 ◽  
Author(s):  
Ritika Gupta ◽  
Sunaina Kaul ◽  
Vishal Singh ◽  
Sandeep Kumar ◽  
Nitin Kumar Singhal

Abstract For maintaining the healthy metabolic status, vitamin D is a beneficial metabolite stored majorly in its pre-activated form, 25-hydroxyvitamin D3 (25(OH)D3). Due to its important role in bone strengthening, the study was planned to quantify 25(OH)D3 levels in our blood. Quantification techniques for 25(OH)D3 are costly thus requiring a need for a low cost, and sensitive detection methods. In this work, an economic, and sensitive sensor for the detection of 25(OH)D3 was developed using aptamer and graphene oxide (GO). Aptamer is an oligonucleotide, sensitive towards its target, whereas, GO with 2D nanosheets provides excellent quenching surface. Aptamer labeled with fluorescein (5’, 6-FAM) is adsorbed by π -π interaction on the GO sheets leading to quenching of the fluorescence due to Förster resonance energy transfer (FRET). However, in the presence of 25(OH)D3, a major portion of aptamer fluorescence remains unaltered, due to its association with 25(OH)D3. However, in the absence, aptamer fluorescence gets fully quenched. Fluorescence intensity quenching was monitored using fluorescence spectrophotometer and agarose gel based system. The limit of detection of 25(OH)D3 by this method was found to be 0.15 µg/mL. Therefore, this method could come up as a new sensing method in the field of vitamin D detection.


2018 ◽  
Author(s):  
Robert B. Quast ◽  
Fataneh Fatemi ◽  
Michel Kranendonk ◽  
Emmanuel Margeat ◽  
Gilles Truan

ABSTRACTConjugation of fluorescent dyes to proteins - a prerequisite for the study of conformational dynamics by single molecule Förster resonance energy transfer (smFRET) - can lead to substantial changes of the dye’s photophysical properties, ultimately biasing the quantitative determination of inter-dye distances. In particular the popular cyanine dyes and their derivatives, which are by far the most used dyes in smFRET experiments, exhibit such behavior. To overcome this, a general strategy to site-specifically equip proteins with FRET pairs by chemo-selective reactions using two distinct non-canonical amino acids simultaneously incorporated through genetic code expansion in Escherichia coli was developed. Applied to human NADPH- cytochrome P450 reductase (CPR), the importance of homogenously labeled samples for accurate determination of FRET efficiencies was demonstrated. Furthermore, the effect of NADP+ on the ionic strength dependent modulation of the conformational equilibrium of CPR was unveiled. Given its generality and accuracy, the presented methodology establishes a new benchmark to decipher complex molecular dynamics on single molecules.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Mitsutaka Kitano ◽  
Myra Hosmillo ◽  
Edward Emmott ◽  
Jia Lu ◽  
Ian Goodfellow

ABSTRACT Human norovirus (HuNoV) is a major cause of nonbacterial gastroenteritis worldwide, yet despite its impact on society, vaccines and antivirals are currently lacking. A HuNoV replicon system has been widely applied to the evaluation of antiviral compounds and has thus accelerated the process of drug discovery against HuNoV infection. Rupintrivir, an irreversible inhibitor of the human rhinovirus 3C protease, has been reported to inhibit the replication of the Norwalk virus replicon via the inhibition of the norovirus protease. Here we report, for the first time, the generation of rupintrivir-resistant human Norwalk virus replicon cells in vitro . Sequence analysis revealed that these replicon cells contained amino acid substitutions of alanine 105 to valine (A105V) and isoleucine 109 to valine (I109V) in the viral protease NS6. The application of a cell-based fluorescence resonance energy transfer (FRET) assay for protease activity demonstrated that these substitutions were involved in the enhanced resistance to rupintrivir. Furthermore, we validated the effect of these mutations using reverse genetics in murine norovirus (MNV), demonstrating that a recombinant MNV strain with a single I109V substitution in the protease also showed reduced susceptibility to rupintrivir. In summary, using a combination of different approaches, we have demonstrated that, under the correct conditions, mutations in the norovirus protease that lead to the generation of resistant mutants can rapidly occur.


2018 ◽  
Vol 8 ◽  
pp. 184798041882039 ◽  
Author(s):  
Guohua Zhou ◽  
Huimin Jiang ◽  
Yanfang Zhou ◽  
Peilian Liu ◽  
Yongmei Jia ◽  
...  

In recent years, palladium nanoparticles have been proved as energy acceptor candidates in fluorescence resonance energy transfer-based sensors for analytical and biological purposes. In this article, peptide-coated palladium nanoparticles were prepared using a simple one-step preparation method. The peptide Cys-Ala-Leu-Asn-Asn was used as a ligand, whereas hydrazine hydrate was used as a reductant to obtain water-soluble and stable peptide-coated palladium nanoparticles. Additionally, peptide-coated palladium nanoparticles were functionalized by adding the functional peptide CALNNGGARK(FITC) in combination with Cys-Ala-Leu-Asn-Asn during the preparation process. The prepared functionalized peptide-coated palladium nanoparticles were used for trypsin detection based on the fluorescence resonance energy transfer approach. Under optimized conditions, the proposed method can be used for the detection of trypsin concentrations in the range of approximately 0.2–8-μg/mL with a limit of detection of 0.18-μg/mL. The functionalized peptide-coated palladium nanoparticles were successfully applied for the detection of trypsin in urine samples. Our findings also indicated that peptide-coated palladium nanoparticles can highly quench fluorophores and are suitable for the manufacture of off–on state fluorescent sensors. We anticipated that the peptide-coated palladium nanoparticles proposed in this article will have great potential for the detection of trypsin in urine and other analytical, biological, and clinical applications.


2019 ◽  
Vol 116 (17) ◽  
pp. 8350-8359 ◽  
Author(s):  
Jaba Mitra ◽  
Monika A. Makurath ◽  
Thuy T. M. Ngo ◽  
Alice Troitskaia ◽  
Yann R. Chemla ◽  
...  

G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.


2020 ◽  
Vol 8 (37) ◽  
pp. 8607-8613
Author(s):  
Ying Zhang ◽  
Bo Duan ◽  
Qing Bao ◽  
Tao Yang ◽  
Tiancheng Wei ◽  
...  

A highly selective, fluorescence resonance energy transfer (FRET) based aptasensor for enrofloxacin (ENR) detection was developed using core–shell upconversion nanoparticles as an energy donor and graphene oxide as an energy acceptor.


Sign in / Sign up

Export Citation Format

Share Document