scholarly journals Multilocus phylogeography and ecological niche modeling suggest speciation with gene flow between the two Bamboo Partridges

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pengcheng Wang ◽  
Chiafen Yeh ◽  
Jiang Chang ◽  
Hongyan Yao ◽  
Yiqiang Fu ◽  
...  

AbstractBackgroundUnderstanding how species diversify is a long-standing question in biology. The allopatric speciation model is a classic hypothesis to explain the speciation process. This model supposes that there is no gene flow during the divergence process of geographically isolated populations. On the contrary, the speciation with gene flow model supposes that gene flow does occur during the speciation process. Whether allopatric species have gene flow during the speciation process is still an open question.MethodsWe used the genetic information from 31 loci of 24 Chinese Bamboo Partridges (Bambusicola thoracicus) and 23 Taiwan Bamboo Partridges (B. sonorivox) to infer the gene flow model of the two species, using the approximate Bayesian computation (ABC) model. The ecological niche model was used to infer the paleo-distribution during the glacial period. We also tested whether the two species had a conserved ecological niche by means of a background similarity test.ResultsThe genetic data suggested that the post-divergence gene flow between the two species was terminated before the mid-Pleistocene. Furthermore, our ecological niche modeling suggested that their ecological niches were highly conserved, and that they shared an overlapping potential distribution range in the last glacial maximum.ConclusionsThe allopatric speciation model cannot explain the speciation process of the two Bamboo Partridges. The results of this study supported a scenario in which speciation with gene flow occurring between the allopatric species and have contributed to our understanding of the speciation process.

Author(s):  
A. Townsend Peterson ◽  
Jorge Soberón ◽  
Richard G. Pearson ◽  
Robert P. Anderson ◽  
Enrique Martínez-Meyer ◽  
...  

This book deals with ecological niche modeling and species distribution modeling, two emerging fields that address the ecological, geographic, and evolutionary dimensions of geographic distributions of species. It provides a conceptual overview of the complex relationships between ecological niches and geographic distributions of species, both across space and (perhaps to a lesser degree) through time. The emphasis is on how that conceptual framework relates to ecological niche modeling and species distribution modeling, which the book argues are complementary and are most broadly applicable to diverse questions regarding the ecology and geography of biodiversity phenomena. Part I of the book introduces the conceptual framework for thinking about and discussing the distributional ecology of species, Part II is concerned with the data and tools that have been used in the early development of the field, and Part III focuses on real-world situations to which these tools have been applied.


2021 ◽  
Author(s):  
R. Pshegusov ◽  
F. Tembotova ◽  
V. Chadaeva ◽  
Y. Sablirova ◽  
M. Mollaeva ◽  
...  

Abstract Background: Ecological niche modeling of the main forest-forming species within the same geographic range contributes significantly to understanding the coexistence of species and the regularities of formation of their current spatial distribution. The main abiotic and biotic environmental variables, as well as species dispersal capability, affecting the spatial distribution of the main forest-forming species in the Caucasus, have not been sufficiently studied.Methods: We conducted studies within the physiographic boundaries of the Caucasus, including Russian Federation, Georgia, Armenia, and Azerbaijan. Our studies focused on ecological niche modeling of pure fir, spruce, pine, beech, hornbeam, and birch forests through species distribution modeling and the concept of the BAM (Biotic-Abiotic-Movement) diagram. We selected 648 geographic records of pure forests occurrence. ENVIREM and SoilGrids databases, statistical tools in R, Maxent were used to assess the influence of abiotic, biotic, and movement factors on the spatial distribution of the forest-forming species.Results: Geographic expression of fundamental ecological niches of the main forest-forming species depended mainly on topographic conditions and water regime. Competitor influence reduced the potential ranges of the studied species by 1.2–1.7 times to the geographic expression of their realized ecological niches. Movement factor significantly limited the areas suitable for pure forests (by 1.2–1.8 times compared with geographic expression of realized ecological niches), except for birch forests.Conclusion: Distribution maps, modeled by abiotic, biotic variables and movement factor, were the closest to the real distribution of the forest-forming species in the Caucasus. Biotic and movement factors should be considered in modeling studies of forest ecosystems if models are to have biological meaning and reality.


Author(s):  
A. Townsend Peterson ◽  
Jorge Soberón ◽  
Richard G. Pearson ◽  
Robert P. Anderson ◽  
Enrique Martínez-Meyer ◽  
...  

This book has described a comprehensive framework for thinking about the geography and ecology of species distributions, arguing that such a framework is critical to further progress in the field of ecological niches and distributions. To develop this framework, traditional concepts in ecology have been radically reworked. In this conclusion, some of the challenges for future work regarding ecological niche modeling are discussed, such as fully integrating the BAM diagram with central concepts of population biology and statistical theory; clarifying the notion of niche conservatism versus niche evolution as regards scenopoetic versus bionomic environmental dimensions; and improving the link between correlational and mechanistic approaches to estimating and understanding ecological niches. The book argues that careful conceptual thinking must be combined with detailed empirical exploration in order to address each of these challenges.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William E. Banks ◽  
Marie-Hélène Moncel ◽  
Jean-Paul Raynal ◽  
Marlon E. Cobos ◽  
Daniel Romero-Alvarez ◽  
...  

AbstractMiddle Paleolithic Neanderthal populations occupied Eurasia for at least 250,000 years prior to the arrival of anatomically modern humans. While a considerable body of archaeological research has focused on Neanderthal material culture and subsistence strategies, little attention has been paid to the relationship between regionally specific cultural trajectories and their associated existing fundamental ecological niches, nor to how the latter varied across periods of climatic variability. We examine the Middle Paleolithic archaeological record of a naturally constrained region of Western Europe between 82,000 and 60,000 years ago using ecological niche modeling methods. Evaluations of ecological niche estimations, in both geographic and environmental dimensions, indicate that 70,000 years ago the range of suitable habitats exploited by these Neanderthal populations contracted and shifted. These ecological niche dynamics are the result of groups continuing to occupy habitual territories that were characterized by new environmental conditions during Marine Isotope Stage 4. The development of original cultural adaptations permitted this territorial stability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamil Konowalik ◽  
Agata Nosol

AbstractWe examine how different datasets, including georeferenced hardcopy maps of different extents and georeferenced herbarium specimens (spanning the range from 100 to 85,000 km2) influence ecological niche modeling. We check 13 of the available environmental niche modeling algorithms, using 30 metrics to score their validity and evaluate which are useful for the selection of the best model. The validation is made using an independent dataset comprised of presences and absences collected in a range-wide field survey of Carpathian endemic plant Leucanthemum rotundifolium (Compositae). Our analysis of models’ predictive performances indicates that almost all datasets may be used for the construction of a species distributional range. Both very local and very general datasets can produce useful predictions, which may be more detailed than the original ranges. Results also highlight the possibility of using the data from manually georeferenced archival sources in reconstructions aimed at establishing species’ ecological niches. We discuss possible applications of those data and associated problems. For the evaluation of models, we suggest employing AUC, MAE, and Bias. We show an example of how AUC and MAE may be combined to select the model with the best performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriel Parra-Henao ◽  
Laura C. Suárez-Escudero ◽  
Sebastián González-Caro

Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasiteTrypanosoma cruzi,which causes Chagas disease.This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus,Rhodnius pallescens,R. prolixus, andTriatoma maculata) were analyzed.The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution wereP. geniculatus,R. pallescens, andR. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.


Sign in / Sign up

Export Citation Format

Share Document